Строение и состав периферических нервов. Структурно-функциональная классификация миелиновых и безмиелиновых нервных волокон. Процесс миелинизации и функция миелина. Дегенерация и регенерация нервных волокон при повреждении. Строение периферического нерва

Введение

Периферическая нервная система состоит из нервов, соединяющих центральную нервную систему (ЦНС) с органами чувств, мышцами, железами. Нервы делятся на спинномозговые и черепномозговые. По их ходу могут располагаться нервные узлы (ганглии) - небольшие скопления нейронов вне ЦНС. Нервы, соединяющие ЦНС с органами чувств и мышцами, относят к соматической нервной системе, а с внутренними органами, кровеносными сосудами, железами - к вегетативной нервной системе.

Цель нашей работы: охарактеризовать строение, свойства и функции периферической нервной системы.

Для реализации поставленной цели предстояло решить ряд задач:

1. Определить отделы периферической нервной системы.

2. Дать морфологическую характеристику периферической нервной системе.

3. Выявить функциональные особенности периферической нервной системы.

Строение периферической нервной системы

Периферическая нервная система -- это часть нервной системы. Она находится вне головного и спинного мозга, обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма.

К периферической нервной системе относятся черепные и спинномозговые нервы, чувствительные узлы черепных и спинномозговых нервов, узлы (ганглии) и нервы вегетативной (автономной) нервной системы и, кроме того, ряд элементов нервной системы, при помощи которых воспринимаются внешние и внутренние раздражители (рецепторы и эффекторы).

Нервы образуются отростками нервных клеток, тела которых лежат в пределах головного и спинного мозга, а также в нервных узлах периферической нервной системы. Снаружи нервы покрыты рыхлой соединительнотканной оболочкой -- эпиневрием. В свою очередь нерв состоит из пучков нервных волокон, покрытых тонкой оболочкой -- периневрием, а каждое нервное волокно -- эндоневрием.

Периферические нервы могут быть различные по длине и толщине. Самым длинным черепным нервом является блуждающий нерв. Известно, что периферическая нервная система соединяет головной и спинной мозг с другими системами при помощи двух видов нервных волокон -- центростремительных и центробежных. Первая группа волокон проводит импульсы от периферии к ЦНС и называется чувствительными (эфферентными) нервными волокнами, вторая несет импульсы от ЦНС к иннервируемому органу - это двигательные (афферентные) нервные волокна.

В зависи?о?ти от иннервируемых органов эфферентные волокна периферических нервов могут выполнять двигательную функцию -иннервируют мышечную ткань; секреторную -- иннервируют железы; трофическую -- обеспечивают обменные процессы в тканях. Выделяют нервы двигательные, чувствительные и смешанные.

Двигательный нерв образуется отростками нервных клеток, находящихся в ядрах передних рогов спинного мозга или в двигательных ядрах черепных нервов.

Чувствительный нерв состоит из отростков нервных клеток, которые формируют спинномозговые узлы черепных нервов.

Смешанные нервы содержат как чувствительные, так и двигательные нервные волокна.

Вегетативные нервы и их ветви сформированы отростками клеток боковых рогов спинного мозга или вегетативными ядрами черепных нервов. Отростки этих клеток являются предузловыми нервными волокнами и идут до вегетативных (автономных) узлов, которые входят в состав вегетативных нервных сплетений. Отростки клеток узлов направляются к иннервируемым органам и тканям и называются послеузловыми нервными волокнами.

16-09-2012, 21:50

Описание

В периферической нервной системе различают следующие компоненты:
  1. Ганглии.
  2. Нервы.
  3. Нервные окончания и специализированные органы чувств.

Ганглии

Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

Миелин (рис. 1.5.3)

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

  • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
  • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

Регенерация периферических нервов

При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

Статья из книги: .

Периферические нервы состоят из пучков миелиновых и безмиелиновых нервных волокон, одиночных нейронов или их скоплений и оболочек. Тела нейронов находятся в сером веществе спинного и головного мозга и спинномозговых узлах (ганглиев). В составе нервов находятся чувствительные (афферентные) и двигательные (эфферентные) нервные волокна, но чаще те и другие. Между нервными волокнами располагается эндоневрий, представленный нежными прослойками рыхлой волокнистой соединительной ткани с сосудами.

Периневрий одевает отдельные пучки нервных волокон. Он содержит 5-6 пластов однослойного эпителия эпендимоглиального типа, лежащего на базальной мембране, разделенного прослойками рыхлой волокнистой соединительной ткани. Периневрий является продолжением эпителия мозговых оболочек. По жидкости периневрального пространства могут распространяться вирусы (например, бешенства).

Наружная оболочка - эпиневрий - представляет собой поверхностную соединительнотканную оболочку нерва, состоящую из плотной соединительной ткани с кровеносными и лимфатическими сосудами, нервными окончаниями.

Одиночные нейроны и их скопления в составе нервов, как правило, встречаются в вегетативной нервной системе.

Вегетативная нервная система

Вегетативная нервная система является частью единой нервной системы. Она иннервирует внутренние органы, кровеносные сосуды, железы, принимает участие в иннервации скелетных мышц, регулирует процессы кровообращения, дыхания, обмена веществ, питания, выделения, терморегуляции и пр. Ее называют автономной, но автономность этой системы, хотя и функционирует она независимо от сознания, относительна, так как все стороны ее деятельности находятся под контролем коры большого мозга. И соматическая, и автономная системы построены по одной схеме, но развиваются дивергентно: соматическая система - вместе с органами движения, а автономная - вместе с внутренними органами.

Вегетативная нервная система подразделяется на симпатическую и парасимпатическую. Стимуляция симпатической нервной системы увеличивает частоту и силу сердечных сокращений, вызывает сужение сосудов внутренних органов, повышает артериальное давление, расширяет бронхи, зрачки, снижает тонус желудочно-кишечного тракта, оказывает адаптационно-трофическое влияние на ткани. Стимуляция парасимпатической нервной системы снижает силу и частоту сердечных сокращений, снижает артериальное давление, приводит к усилению перистальтики кишечника и др. Вегетативная нервная система подготавливает и обеспечивает соматические эффекты соответствующими метаболическими процессами.

Нервная система человека является самым главным органом, который делает нас нами во всех смыслах этого слова. Это совокупность различных тканей и клеток (нервная система состоит не только из нейронов, как многие думают, но также других особенных специализированных телец), которая отвечают за нашу чувствительность, эмоции, мысли, а также за работу каждой клетки нашего тела.

Её функции в целом - сбор информации о теле или окружающей среде при помощи огромного количества рецепторов, передача этой информации в специальные аналитические или командные центры, анализ полученной информации на сознательном или подсознательном уровне, а также выработка решений, передача этих решений внутренним органам или мышцам с контролем за их исполнением при помощи рецепторов.

Все функции условно можно поделить на командные или исполнительные. К командным относятся анализ информации, управление организмом, мышление. Вспомогательные функции, такие как контроль, сбор и передача информации, а также командных сигналов к внутренним органам, являются предназначением периферической нервной системы.

Хоть вся нервная система человека обычно понятийно разделяется на две части, центральная и периферическая нервные системы являются одним целым, так как одно невозможно без другого, а нарушение работы одной тут же влечёт патологические сбои в работе второй, в итоге как следствие – к нарушению работы организма или двигательной активности.

Как устроена ПНС и её функции

Периферическая нервная система состоит из всех , сплетений и нервных окончаний, которые находятся за пределами спинного, а также головного мозга, которые являются органами ЦНС.

Проще говоря, периферическая нервная система – это нервы, которые располагаются по периферии организма за пределами органов центральной нервной системы, которые занимают центральное место.

Структура ПНС представлена черепными и спинальными нервами, которые являются своеобразными главными проводящими нервными кабелями, собирающими информацию от более мелких, но очень многочисленных нервов, расположенных по всему телу человека, напрямую соединяя ЦНС с органами тела, а также нервов вегетативной и соматической нервной системы.

Деление ПНС на вегетативную и соматическую также немного условно, оно происходит в соответствии с выполняемыми нервами функциями:

Соматическая система состоит из нервных волокон или окончаний, задача которых сбор, доставка чувственной информации от рецепторов или органов чувств к ЦНС, а также осуществление моторной активности, согласно сигналам центральной нервной системы. Она представлена двумя типами нейронов: сенсорными или афферентными и моторными – эфферентными. Афферентные нейроны отвечают за чувствительность и доставляют информацию для ЦНС об окружающей человека обстановке, а также о состоянии его тела. Эфферентные, напротив, доставляют информацию от ЦНС к мышечным волокнам.

Вегетативная нервная система занимается регуляцией деятельности внутренних органов, осуществляя контроль за ними при помощи рецепторов, передавая возбуждающие либо тормозящие сигналы от ЦНС к органу, заставляя его работать, либо отдыхать. Именно вегетативная система в тесном сотрудничестве с ЦНС обеспечивает гомеостаз, регулируя внутреннюю секрецию, сосуды, а также многие процессы в организме.

Устройство вегетативного отдела также довольно сложно и представлено тремя нервными подсистемами:

  • Симпатическая нервная система – совокупность нервов, отвечающая за возбуждение органов и как следствие – усиление их активности.
  • Парасимпатическая – наоборот, представлена нейронами, чья функция заключается в угнетении или успокоении органов либо желёз для снижения их производительности.
  • Метасимпатическая состоит из нейронов, способных стимулировать сократительную деятельность, которые находятся в таких органах, как сердце, лёгкие, мочевой пузырь, кишечник и другие полые органы, способные к сокращению для выполнения своих функций.

Строение симпатической и парасимпатической систем довольно схоже. Они обе подчиняются особым ядрам (симпатическим и парасимпатическим, соответственно), расположенном в спинном или головном мозге, которые, анализируя полученную информацию, активируются и регулируют деятельность внутренних органов, отвечающих по большей части за переработку или секрецию.

Метасимпатическая же таких ядер не имеет и функционирует как отдельные комплексы микроганглионарных образований, нервов, которые их соединяют и отдельных нервных клеток с их отростками, которые полностью находятся в контролируемом органе, потому она действует несколько автономно от ЦНС. Её пункты управления представлены особыми интрамуральными ганглиями – нервными узлами, которые отвечают за ритмичные сокращения мышц и могут регулироваться при помощи гормонов, вырабатываемых эндокринными железами.

Все нервы симпатической или парасимпатической вегетативной подсистемы совместно с соматическими соединяются в большие главные нервные волокна, которые ведут к спинному мозгу, а через него к головному, либо напрямую к органам головного мозга.

Заболевания, которым подвержена периферическая нервная система человека:

Периферические нервы, как все органы человека подвержены определённым заболеваниям или патологиям. Заболевания ПНС делятся на невралгии и невриты, являющиеся комплексами всевозможных недугов, различающиеся между собой по тяжести повреждения нерва:

  • Невралгии – заболевания нерва, вызывающие его воспаление без разрушения его структуры или гибели клеток.
  • Невриты – воспаления или травмы с разрушением структуры нервной ткани различной тяжести.

Неврит может возникнуть сразу по причине негативного воздействия на нерв любого происхождения или развиться из запущенной невралгии, когда из-за отсутствия лечения воспалительный процесс стал причиной начавшейся гибели нейронов.

Также все недуги, какие могут коснуться периферических нервов, делятся по топографически-анатомическому признаку, а проще говоря — по месту возникновения:

  • Мононеврит – заболевание одного нерва.
  • Полиневрит – заболевание нескольких.
  • Мультиневрит – заболевание множества нервов.
  • Плексит – воспаление сплетений нервов.
  • Фуникулит – воспаление нервных канатиков – проводящих нервные импульсы каналов спинного мозга, по которым движется информация от периферических нервов к ЦНС и обратно.
  • Радикулит – воспаление корешков периферических нервов, при помощи которых они крепятся к спинному мозгу.


Ещё их различают по этиологии - причине, которая вызвала невралгию или неврит:

  • Инфекционного характера (вирусного или бактериального).
  • Аллергического.
  • Инфекционно-аллергического.
  • Токсического
  • Травматического.
  • Компрессионно-ишемического – заболевания по причине сдавливания нерва (различные защемления).
  • Дисметаболического характера, когда они вызваны нарушением обмена веществ (недостаток витамина. Выработки какого-то вещества и т.д.)
  • Дисциркуляторного – по причине нарушения кровообращения.
  • Идеопатического характера – т.е. наследственного.

Нарушения работы периферической нервной системы

При поражении органов ЦНС люди ощущают изменение умственной активности или нарушение работы внутренних органов, так как контролирующие либо управляющие центры посылают неправильные сигналы.

Когда происходит поломка периферических нервов, сознание человека обычно не страдает. Можно отметить только возможные неверные ощущения от органов чувств, когда человеку кажется другим вкус, запах или мерещатся тактильные прикосновения, мурашки и т.п., по причине сбоев в работе рецептов, либо нейронного волокна, по которому они передаются в ЦНС, искажаясь уже по пути. Также проблемы могут возникнуть при проблемах с вестибулярным нервом, при двустороннем поражении которого человек может потерять ориентацию в пространстве.

Обычно, поражения периферических нейронов приводят, прежде всего, к болевым ощущениям или потере чувствительности (тактильной, вкусовой, зрительной и т.д.). Затем происходит прекращение работы органов, за которые они отвечали (паралич мышц, остановка сердца, невозможность глотать и т.п.) или нарушение работы из-за неправильных сигналов, которые были искажены во время прохождения по повреждённой ткани (парезы, когда теряется мышечный тонус, потливость, повышенное слюноотделение).

Серьёзные повреждения периферической нервной системы могут привести к инвалидности или даже смерти. Но может ли ПНС восстанавливаться?

Всем известно, что центральная нервная система не способна регенерировать свои ткани путём деления клеток, так как нейроны у людей перестают делиться по достижении определённого возраста. То же самое относится к периферической нервной системе: её нейроны также не способны размножаться, но могут в маленькой степени восполняться за счёт стволовых клеток.

Однако, люди, перенёсшие операцию, и временно терявшие чувствительность кожи области разреза, замечали, что через какое-то длительное время она восстанавливалась. Многие думают, что это проросли новые нервы вместо разрезанных старых, но на самом деле это не так. Отрастают не новые нервы, а старые нервные клетки образуют новые отростки, а затем прокидывают их в неконтролируемую область. Эти отростки могут быть с рецепторами на концах или переплестись, образовав новые нервные связи, а, следовательно – новые нервы.

Восстановление нервов периферической системы происходит точно также, как восстановление ЦНС путём образования новых нервных связей и перераспределения обязанностей между нейронами. Такое восстановление восполняет утраченные функции зачастую лишь частично, а также не обходится без казусов. При сильном поражении каких-либо нервов, один нейрон может относиться не к одной мышце, как должно быть, а к нескольким при помощи новых отростков. Иногда эти отростки проникают довольно не логично, когда при произвольном сокращении одной мышцы происходит непроизвольное сокращение другой. Такое явление довольно часто происходит при запущенном неврите троичного нерва, когда во время еды человек начинает непроизвольно плакать (синдром крокодильих слёз) либо нарушается его мимика.

Как вариант восстановления периферических волокон возможен метод нейрохирургического вмешательства, когда они просто сшиваются. В дополнение разрабатывается новейший метод с использованием чужих стволовых клеток.

Правильная работа нервной системы на разных фронтах крайне важна для полноценной жизни человека. Нервная система человека считается самой сложной структурой организма.

Современные представления о функциях нервной системы

Сложная коммуникационная сеть, которая в биологической науке обозначается как нервная система, подразделяется на центральную и периферическую, в зависимости от расположения самих нервных клеток. Первая объединяет клетки, расположенные в внутри головного и спинного мозга. А вот нервные ткани, которые расположены за их пределами образуют периферическую нервную систему (ПНС).

Центральная нервная система (ЦНС) реализует ключевые функции обработки и передачи информации, взаимодействует с окружающей средой. работает по рефлекторному принципу. Рефлекс - это ответная реакция органа на специфическое раздражение. Непосредственное участие в этом процессе принимают нервные клетки головного мозга. Получив информацию от нейронов ПНС, они ее обрабатывают и направляют импульс в исполнительный орган. По такому принципу осуществляются все произвольные и непроизвольные движения, работают органы чувств (когнитивные функции), действуют мышление и память и т. д.

Клеточные механизмы

Независимо от функций центральной и периферической нервной системы и места расположения клеток, нейроны имеют некоторые общие характеристики со всеми клетками организма. Так, каждый нейрон состоит из:

  • мембраны, или цитоплазматической оболочки;
  • цитоплазмы, или пространства между оболочкой и ядром клетки, которое заполнено внутриклеточной жидкостью;
  • митохондрий , которые обеспечивают сам нейрон энергией, которую они получают из глюкозы и кислорода;
  • микротрубок - тонких структур, которые выполняют опорные функции и помогают клетке сохранять первичную форму;
  • эндоплазматических ретикулом - внутренних сетей, которые клетка использует для самообеспечения.

Отличительные особенности нервных клеток

Нервные клетки имеют специфические элементы, которые отвечают за их коммуникацию с другими нейронами.

Аксоны - главные отростки нервных клеток, по которым передаётся информация по нейронной цепи. Чем больше исходящих каналов передачи информации образует нейрон, тем больше разветвлений имеет его аксон.

Дендриты - другие На них расположены входные синапсы - специфические точки, где происходит контакт с нейронами. Поэтому входящий нейронный сигнал называют синоптической передачей.

Классификация и свойства нервных клеток

Нервные клетки, или нейроны, разделяют на много групп и подгрупп, в зависимости от их специализации, функционала, и места в нейронной сети.

Элементы, отвечающие за сенсорное восприятие внешних раздражителей (зрение, слух, тактильные ощущения, обоняние и т. д.), называются сенсорными. Нейроны, которые объединяются в сети для обеспечения двигательных функций, называются моторными. Также в НС есть смешанные нейроны, которые выполняют универсальные функции.

В зависимости от расположения нейрона по отношению к головному мозгу и исполнительному органу, клетки могут быть первичными, вторичными и т. д.

Генетически нейроны ответственны за синтез специфических молекул, с помощью которых оны выстраивают синаптические связи с другими тканями, но нервные клетки не имеют способностей к делению.

На этом основано и распространённое в литературе высказывание о том, что «нервные клетки не восстанавливаются». Естественно, неспособные к делению нейроны не могут восстанавливаться. Но они каждую секунду способны создавать множество новых нейронных связей для выполнения сложных функций.

Таким образом, клетки запрограммированы постоянно создавать все новые и новые связи. Так развивается сложная коммуникаций. Создание новых связей в мозге приводит к развитию интеллекта, мышления. Мышечный интеллект также развивается подобным образом. Головной мозг необратимо совершенствуется при обучении все новым и новым моторным функциям.

Развитие эмоционального интеллекта, физического и умственного происходит в нервной системе схожим образом. Но если акцент делается на что-то одно, другие функции развиваются не так стремительно.

Головной мозг

Головной мозг взрослого человека весит примерно 1,3-1,5 кг. Учеными установлено, что до 22 лет его вес постепенно увеличивается, а после 75 лет начинает уменьшаться.

В мозге среднестатистического индивида существует более 100 трлн электрических связей, а это в несколько раз больше, чем все соединения во всех электрических устройствах в мире.

На изучение и попытки усовершенствовать функции мозга исследователи тратят десятки лет и десятки миллионов долларов.

Отделы головного мозга, их функциональные характеристики

Все же современные знания о головном мозге можно считать достаточными. Особенно учитывая, что представления науки о функциях отдельных частей мозга сделали возможным развитие неврологии, нейрохирургии.

Мозг разделяют на такие зоны:

  1. Передний мозг. Отделам переднего мозга обычно приписывают «высшие» мыслительные функции. Он включает:
  • лобные доли, отвечающие за координирование функций других областей;
  • отвечающие за слух и речь;
  • теменные доли регулируют управление движениями и сенсорные восприятия.
  • затылочные доли в ответе за зрительные функции.

2. Средний мозг включает:

  • Таламус, где происходит обработка почти всей информации, входящей в передний мозг.
  • Гипоталамус контролирует информацию, поступающую от органов центральной и периферической нервной системы и вегетативной НС.

3. Задний мозг включает:

Спинной мозг

Средняя длина спинного мозга взрослого человека составляет примерно 44 см.

Он берет начало от ствола головного мозга и проходит через большое затылочное отверстие в черепе. Заканчивается он на уровне второго поясничного позвонка. Конец спинного мозга называют мозговым конусом. Он заканчивается скоплением поясничных и крестцовых нервов.

От спинного мозга разветвляется 31 пара спинномозговых нервов. Они помогают соединять отделы нервной системы: центральную и периферическую. Через эти отростки части тела и внутренние органы получают сигналы от НС.

В спинном мозге также происходит первичная обработка рефлекторной информации, благодаря чему ускоряется процесс реагирования человека на раздражители в опасных ситуациях.

Ликвор, или мозговая жидкость, общая для спинного и головного мозга, образуется в сосудистых узлах щелей мозга из плазмы крови.

В норме ее циркуляция должна быть непрерывной. Ликвор создает постоянное внутреннее черепное давление, выполняет амортизирующую и защитную функции. Анализ состава ликвора - один из простейших способов диагностики серьёзных заболеваний НС.

К чему приводят поражения центральной нервной системы разного генеза

Поражения нервной системы, в зависимости от периода, разделяют на:

  1. Предперинатальные - поражения мозга в период внутриутробного развития.
  2. Перинатальные - когда поражение происходит во время родов и в первые часы после рождения.
  3. Постнатальные - когда поражение спинного или головного мозга происходит после рождения.

В зависимости от характера, поражения ЦНС разделяют на:

  1. Травматические (самое очевидное). Нужно взять во внимание, что нервная система имеет первостепенную важность для живых организмов и с точки зрения эволюции, поэтому спинной и головной мозг надежно защищен рядом оболочек, околомозговой жидкостью и костной тканью. Однако в ряде случаев этой защиты недостаточно. Некоторые травмы приводят к повреждениям центральной и периферической нервной системы. Травматические поражения спинного мозга гораздо чаще приводят к необратимым последствиям. Чаще всего это параличи, к тому же дегенеративные (сопровождающиеся постепенным отмиранием нейронов). Чем выше произошло повреждение, тем обширнее парезы (снижение мышечной силы). Наиболее распространенными травмами считаются открытые и закрытые сотрясения мозга.
  2. Органические повреждения ЦНС, зачастую происходят во время родов и приводят к детским церебральным параличам. Возникают они из-за кислородного голодания (гипоксии). Оно является следствием затяжных родов или обвития пуповиной. В зависимости от периода гипоксии, ДЦП может быть разных степеней выраженности: от легкой до тяжелой, которая сопровождается комплексной атрофией функций центральной и периферической нервной системы. Поражения ЦНС после инсульта также определяются как органические.
  3. Генетически обусловленные поражения ЦНС происходят из-за мутаций в генной цепочке. Они считаются наследственным. Самые распространённые - синдром Дауна, синдром Туретта, аутизм (генетически-метаболическое нарушение), которые проявляются сразу после рождения или в первый год жизни. Болезни Кенсингтона, Паркинсона, Альцгеймера считаются дегенеративными и проявляются в среднем или преклонном возрасте.
  4. Энцефалопатии - чаще всего возникают, как следствие поражения мозговых тканей болезнетворными организмами (герпетическая энцефалопатия, менингококковая, цитомегаловирусная).

Строение периферической нервной системы

ПНС образуют нервные клетки, расположенные за пределами головного мозга и спинномозгового канала. Она состоит из (черепного, спинномозгового и вегетативного). Также в ПНС существует 31 пара нервов и нервные окончания.

В функциональном смысле ПНС состоит из соматических нейронов, которые передают моторные импульсы и контактируют с рецепторами органов чувств, и вегетативных, которые отвечают за деятельность внутренних органов. Периферические нейронные структуры содержат двигательные, сенсетивные и вегетативные волокна.

Воспалительные процессы

Заболевания центральной и периферической нервной системы носят совершенно разный характер. Если повреждения ЦНС чаще всего имеют комплексные, глобальные последствия, то заболевания ПНС зачастую проявляются в виде воспалительных процессов в зонах нервных узлов. В медицинской практике такие воспаления именуют невралгиями.

Невралгия - это болезненные воспаления в зоне скопления нервных узлов, раздражение которых, вызывает острый рефлекторный приступ боли. К невралгиям относят полиневриты, радикулиты, воспаления тройничного или поясничного нерва, плекситы и т. д.

Роль центральной и периферической нервной системы в эволюции человеческого организма

Нервная система - единственная из систем человеческого организма, которая может совершенствоваться. Сложное строение центральной и периферической нервной системы человека обусловлено генетически и эволюционно. Мозгу присуще уникальное свойство - нейропластичность. Это способность клеток ЦНС брать на себя функции соседних отмерших клеток, выстраивая новые нейронные связи. Этим объясняются медицинские феномены, когда дети с органическим поражением мозга развиваются, обучаются ходьбе, речи и т. д., а люди после инсульта со временем восстанавливают способность нормально передвигаться. Этому всему предшествует построение миллионов новых связей между центральными и периферическими частями нервной системы.

С прогрессом различных методик восстановления пациентов после мозговых травм рождаются также методики для развития человеческого потенциала. Они основаны на логическом предположении о том, что если и центральная, и периферическая нервная система может восстанавливаться после травм, то здоровые нервные клетки также способны развивать свой потенциал практически до бесконечности.