Характеристическое рентгеновское излучение: описание, действие, особенности. Рентгеновское излучение Рентгеновские лучи определение

ЛЕКЦИЯ

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

2. Тормозное рентгеновское излучение, его спектральные свойства.

3. Характеристическое рентгеновское излучение (для ознакомления).

4. Взаимодействие рентгеновского излучения с веществом.

5.Физические основы использования рентгеновского излучения в медицине.

Рентгеновское излучение (X – лучи) открыты К. Рентгеном который в 1895 г. стал первым Нобелевским лауреатом по физике.

1. Природа рентгеновского излучения

Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым g -излучением.

Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv 2 /2 = eU (1)

где m , e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

2. Спектральные свойства тормозного рентгеновского излучения .

Итак, в случае торможения электрона в веществе анода возникает тормозное рентгеновское излучение.

Спектр тормозного рентгеновского излучения является сплошным . Причина этого в следующем.

При торможении электронов у каждого из них часть энергии идет на нагрев анода (Е 1 = Q ), другая часть на создание фотона рентгеновского излучения (Е 2 = hv ), иначе, eU = hv + Q . Соотношение между этими частями случайное.

Таким образом, непрерывный спектр тормозного рентгеновского излучения образуется благодаря торможению множества электронов, каждый из которых испускает один квант рентгеновского излучения hv (h ) строго определенной величины. Величина этого кванта различна для разных электронов. Зависимость потока энергии рентгеновского излучения от длины волны l , т.е. спектр рентгеновского излучения представлен на рис.2.



Рис.2. Спектр тормозного рентгеновского излучения: а) при различном напряжении U в трубке; б) при различной температуре Т катода.

Коротковолновое (жесткое) излучение обладает большей проникающей способностью, чем длинноволновое (мягкое). Мягкое излучение сильнее поглощается веществом.

Со стороны коротких длин волн спектр резко обрывается на определенной длине волны l m i n . Такое коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона (Q = 0):

eU = hv max = hc/ l min , l min = hc/(eU), (2)

l min (нм) = 1,23/ U кВ

Спектральный состав излучения зависит от величины напряжения на рентгеновской трубке, с увеличением напряжения значение l m i n смещается в сторону коротких длин волн (рис. 2 a ).

При изменении температуры Т накала катода возрастает эмиссия электронов. Следовательно, увеличивается ток I в трубке, но спектральный состав излучения не изменяется (рис. 2б).

Поток энергии Ф * тормозного излучения прямо пропорционален квадрату напряжения U между анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Ф = kZU 2 I . (3)

где k = 10 –9 Вт/(В 2 А).

3. Характеристическое рентгеновское излучение (для ознакомления).

Увеличение напряжения на рентгеновской трубке приводит к тому, что на фоне сплошного спектра появляется линейчатый, который соответствует характеристическому рентгеновскому излучению. Это излучение специфично для материала анода.

Механизм его возникновения таков. При большом напряжении ускоренные электроны (с большой энергией) проникают в глубь атома и выбивают из его внутренних слоев электроны. На свободные места переходят электроны с верхних уровней, в результате чего высвечиваются фотоны характеристического излучения.

Спектры характеристического рентгеновского излучения отличаются от оптических спектров.

– Однотипность.

Однотипностьхарактеристических спектров обусловлена тем, что внутренние электронные слои у разных атомов одинаковы и отличаются только энергетически из–за силового воздействия со стороны ядер, которое увеличивается с возрастанием порядкового номера элемента. Поэтому характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Опытно это было подтверждено сотрудником Рентгена – Мозли , который измерил частоты рентгеновских переходов для 33 элементов. Им был установлен закон.

ЗАКОН МОЗЛИ корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

A × (Z – В ), (4)

где v – частота спектральной линии, Z – атомный номер испускающего элемента. А, В – константы.

Важность закона Мозли заключается в том, что по этой зависимости можно по измеренной частоте рентгеновской линии точно узнать атомный номер исследуемого элемента. Это сыграло большую роль в размещении элементов в периодической системе.

Независимость от химического соединения.

Характеристические рентгеновские спектры атома не зависят от химического соединения, в которое входит атом элемента. Например, рентгеновский спектр атома кислорода одинаков для О 2, Н 2 О, в то время как оптические спектры этих соединений отличаются. Эта особенность рентгеновского спектра атома послужила основанием для названия "характеристическое излучение ".

4. Взаимодействие рентгеновского излучения с веществом

Воздействие рентгеновского излучения на объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рентгеновское излучение в веществе поглощается или рассеивается . При этом могут происходить различные процессы, которые определяются соотношением энергии рентгеновского фотона hv и энергии ионизации А и (энергия ионизации А и – энергия, необходимая для удаления внутренних электронов за пределы атома или молекулы).

а) Когерентное рассеяние (рассеяние длинноволнового излучения) происходит тогда, когда выполняется соотношение

hv < А и.

У фотонов вследствие взаимодействия с электронами изменяется только направление движения (рис.3а), но энергия hv и длина волны не меняются (поэтому это рассеяние называется когерентным ). Так как энергия фотона и атома не изменяются, то когерентное рассеяние не влияет на биологические объекты, но при создании защиты от рентгеновского излучения следует учитывать возможность изменения первичного направления пучка.

б) Фотоэффект происходит тогда, когда

hv ³ А и .

При этом могут быть реализованы два случая.

1. Фотон поглощается, электрон отрывается от атома (рис. 3б). Происходит ионизация. Оторвавшийся электрон приобретает кинетическую энергию: E к = hv – A и . Если кинетическая энергия велика, то электрон может ионизировать соседние атомы путем соударения, образуя новые вторичные электроны.

2. Фотон поглощается, но его энергии не достаточно для отрыва электрона, и может происходить возбуждение атома или молекулы (рис.3в). Это часто приводит к последующему излучению фотона в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям. Фотоэффект происходит, в основном, на электронах внутренних оболочек атомов с высоким Z .

в) Некогерентное рассеяние (эффект Комптона, 1922 г.) происходит тогда, когда энергия фотона намного больше энергии ионизации

hv » А и.

При этом электрон отрывается от атома (такие электроны называются электронами отдачи ), приобретает некоторую кинетическую энергию E к , энергия самого фотона уменьшается (рис. 4г):

hv = hv " + А и + Е к. (5)

Образующееся таким образом излучение с измененной частотой (длиной) называется вторичным , оно рассеивается по всем направлениям.

Электроны отдачи, если они имеют достаточную кинетическую энергию, могут ионизировать соседние атомы путем соударения. Таким образом, в результате некогерентного рассеяния образуется вторичное рассеянное рентгеновское излучение и происходит ионизация атомов вещества.

Указанные (а,б,в) процессы могут вызвать рад последующих. Например (рис. 3д), если при фотоэффекте происходит отрыв от атома электронов на внутренних оболочках, то на их место могут переходить электроны с более высоких уровней, что сопровождается вторичным характеристическим рентгеновским излучением данного вещества. Фотоны вторичного излучения, взаимодействуя с электронами соседних атомов, могут, в свою очередь, вызывать вторичные явления.

когерентное рассеяние

hv < А И

энергия и длина волны остаются неизменными

фотоэффект

hv ³ А и

фотон поглощается, е – отрывается от атома – ионизация

hv = А и + Е к

атом А возбуждается при поглощении фотона, R – рентгенолюминесценция

некогерентное рассеяние

hv » А и

hv = hv "+А и +Е к

вторичные процессы при фотоэффекте


Рис. 3 Механизмы взаимодействие рентгеновского излучения с веществом


Физические основы использования рентгеновского излучения в медицине

При падении рентгеновского излучения на тело оно незначительно отражается от его поверхности, а в основном проходит вглубь, при этом частично поглощается и рассеивается, частично проходит насквозь.

Закон ослабления.

Поток рентгеновского излучения ослабляется в веществе по закону:

Ф = Ф 0 е – m × х (6)

где m – линейный коэффициент ослабления, который существенно зависит от плотности вещества. Он равен сумме трех слагаемых, соответствующих когерентному рассеянию m 1, некогерентному m 2 и фотоэффекту m 3 :

m = m 1 + m 2 + m 3 . (7)

Вклад каждого слагаемого определяется энергией фотона. Ниже приведены соотношения этих процессов для мягких тканей (воды).

Энергия, кэВ

Фотоэффект

Комптон - эффект

100 %

Пользуются массовым коэффициентом ослабления, который не зависит от плотности вещества r :

m m = m / r . (8)

Массовый коэффициент ослабления зависит от энергии фотона и от атомного номера вещества – поглотителя:

m m = k l 3 Z 3 . (9)

Массовые коэффициенты ослабления кости и мягкой ткани (воды) отличаются: m m кости / m m воды = 68.

Если на пути рентгеновских лучей поместить неоднородное тело и перед ним поставить флуоресцирующий экран, то это тело, поглощая и ослабляя излучение, образует на экране тень. По характеру этой тени можно судить о форме, плотности, структуре, а во многих случаях и о природе тел. Т.е. существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображение внутренних органов.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария (BaS 0 4), можно видеть их теневое изображение (соотношение коэффициентов ослабления равно 354).


Использование в медицине.

В медицине используется рентгеновское излучение с энергией фотонов от 60 до 100-120 кэВ при диагностике и 150-200 кэВ при терапии.

Рентгенодиагностика распознавание заболеваний при помощи просвечивания тела рентгеновским излучением.

Рентгенодиагностику используют в различных вариантах, которые приведены ниже.



1. При рентгеноскопии рентгеновская трубка расположена позади пациента. Перед ним располагается флуоресцирующий экран. На экране наблюдается теневое (позитивное) изображение. В каждом отдельном случае подбирается соответствующая жесткость излучения, так чтобы оно проходило через мягкие ткани, но достаточно поглощалось плотными. В противном случае получается однородная тень. На экране сердце, ребра видны темными, легкие – светлыми.

2. При рентгенографии объект помещается на кассете, в которую вложена пленка со специальной фотоэмульсией. Рентгеновская трубка располагается над объектом. Получаемая рентгенограмма дает негативное изображение, т.е. обратное по контрасту с картиной, наблюдаемой при просвечивании. В данном методе имеет место большая четкость изображения, чем в (1), поэтому наблюдаются детали, которые трудно рассмотреть при просвечивании.

Перспективным вариантом данного метода является рентгеновская томография и "машинный вариант" – компьютерная томография.

3. При флюорографии, на чувствительной малоформатной пленке фиксируется изображение с большого экрана. При рассматривании снимки рассматриваются на специальном увеличителе.

Рентгенотерапия – использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток.


КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ (КТ)

Метод рентгеновской компьютерной томографии основан на реконструкции изображения оп ределенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотно сти образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения в десятки и даже сотни раз. Это расширяет диагностические возможности метода.

Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительнуюлучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

1. Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

2. Повышать контраст и увеличивать интересующий фрагмент изображения.

3. Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

4. В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

5. Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.


* «Ф» в формуле (3) относится ко всему интервалу излучаемых длин волн и часто называется «Интегральный поток энергии».

Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

ЛЕКЦИЯ 32 РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

ЛЕКЦИЯ 32 РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

1. Источники рентгеновского излучения.

2. Тормозное рентгеновское излучение.

3. Характеристическое рентгеновское излучение. Закон Мозли.

4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления.

5. Физические основы использования рентгеновского излучения в медицине.

6. Основные понятия и формулы.

7. Задачи.

Рентгеновское излучение - электромагнитные волны с длиной волны от 100 до 10 -3 нм. На шкале электромагнитных волн рентгеновское излучение занимает область между УФ-излучением и γ -излучением. Рентгеновское излучение (Х-лучи) открыты в 1895 г. К. Рентгеном, который в 1901 г. стал первым Нобелевским лауреатом по физике.

32.1. Источники рентгеновского излучения

Естественными источниками рентгеновского излучения являются некоторые радиоактивные изотопы (например, 55 Fe). Искусственными источниками мощного рентгеновского излучения являются рентгеновские трубки (рис. 32.1).

Рис. 32.1. Устройство рентгеновской трубки

Рентгеновская трубка представляет собой вакуумированную стеклянную колбу с двумя электродами: анодом А и катодом К, между которыми создается высокое напряжение U (1-500 кВ). Катод представляет собой спираль, нагреваемую электрическим током. Электроны, испущенные нагретым катодом (термоэлектронная эмиссия), разгоняются электрическим полем до больших скоростей (для этого и нужно высокое напряжение) и попадают на анод трубки. При взаимодействии этих электронов с веществом анода возникают два вида рентгеновского излучения: тормозное и характеристическое.

Рабочая поверхность анода расположена под некоторым углом к направлению электронного пучка, для того чтобы создать требуемое направление рентгеновских лучей.

В рентгеновское излучение превращается примерно 1 % кинетической энергии электронов. Остальная часть энергии выделяется в виде тепла. Поэтому рабочая поверхность анода выполняется из тугоплавкого материала.

32.2. Тормозное рентгеновское излучение

Электрон, движущийся в некоторой среде, теряет свою скорость. При этом возникает отрицательное ускорение. Согласно теории Максвелла, любое ускоренное движение заряженной частицы сопровождается электромагнитным излучением. Излучение, возникающее при торможении электрона в веществе анода, называют тормозным рентгеновским излучением.

Свойства тормозного излучения определяются следующими факторами.

1. Излучение испускается отдельными квантами, энергии которых связаны с частотой формулой (26.10)

где ν - частота, λ - длина волны.

2. Все электроны, достигающие анода, имеют одинаковую кинетическую энергию, равную работе электрического поля между анодом и катодом:

где е - заряд электрона, U - ускоряющее напряжение.

3. Кинетическая энергия электрона частично передается веществу и идет на его нагревание (Q), а частично расходуется на создание рентгеновского кванта:

4. Соотношение между Q и hv случайно.

В силу последнего свойства (4) кванты, порожденные различными электронами, имеют различные частоты и длины волн. Поэтому спектр тормозного рентгеновского излучения является сплошным. Типичный вид спектральной плотности потока рентгеновского излучения (Φ λ = άΦ/άλ) показан на рис. 32.2.

Рис. 32.2. Спектр тормозного рентгеновского излучения

Со стороны длинных волн спектр ограничен длиной волны 100 нм, которая является границей рентгеновского излучения. Со стороны коротких волн спектр ограничен длиной волны λ min . Согласно формуле (32.2) минимальной длине волны соответствует случай Q = 0 (кинетическая энергия электрона полностью переходит в энергию кванта):

Расчеты показывают, что поток (Φ) тормозного рентгеновского излучения прямо пропорционален квадрату напряжения U между

анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Спектры тормозного рентгеновского излучения при различных напряжениях, различных температурах катода и различных веществах анода показаны на рис. 32.3.

Рис. 32.3. Спектр тормозного рентгеновского излучения (Φ λ):

а - при различном напряжении U в трубке; б - при различной температуре T

катода; в - при различных веществах анода отличающихся параметром Z

При увеличении анодного напряжения значение λ min смещается в сторону коротких длин волн. Одновременно возрастает и высота спектральной кривой (рис. 32.3, а).

При увеличении температуры катода возрастает эмиссия электронов. Соответственно увеличивается и ток I в трубке. Высота спектральной кривой увеличивается, но спектральный состав излучения не изменяется (рис. 32.3, б).

При изменении материала анода высота спектральной кривой изменяется пропорционально атомному номеру Z (рис. 32.3, в).

32.3. Характеристическое рентгеновское излучение. Закон Мозли

При взаимодействии катодных электронов с атомами анода наряду с тормозным рентгеновским излучением возникает рентгеновское излучение, спектр которого состоит из отдельных линий. Это излучение

имеет следующее происхождение. Некоторые катодные электроны проникают в глубь атома и выбивают электроны с его внутренних оболочек. Образовавшиеся при этом вакантные места заполняются электронами с верхних оболочек, в результате чего высвечиваются кванты излучения. Это излучение содержит дискретный набор частот, определяемый материалом анода, и называется характеристическим излучением. Полный спектр рентгеновской трубки представляет собой наложение характеристического спектра на спектр тормозного излучения (рис. 32.4).

Рис. 32. 4. Спектр излучения рентгеновской трубки

Существование характеристических спектров рентгеновского излучения было обнаружено с помощью рентгеновских трубок. Позже было установлено, что такие спектры возникают при любой ионизации внутренних орбит химических элементов. Исследовав характеристические спектры различных химических элементов, Г. Мозли (1913 г.) установил следующий закон, носящий его имя.

Корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

где ν - частота спектральной линии, Z - атомный номер испускающего элемента, А, В - константы.

Закон Мозли позволяет определить атомный номер химического элемента по наблюдаемому спектру характеристического излучения. Это сыграло большую роль при размещении элементов в периодической системе.

32.4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления

Существуют два основных типа взаимодействия рентгеновского излучения с веществом: рассеяние и фотоэффект. При рассеянии направление движения фотона изменяется. При фотоэффекте фотон поглощается.

1. Когерентное (упругое) рассеяние происходит тогда, когда энергия рентгеновского фотона недостаточна для внутренней ионизации атома (выбивания электрона с одной из внутренних оболочек). При этом изменяется направление движения фотона, а его энергия и длина волны не изменяются (поэтому это рассеяние и называется упругим).

2. Некогерентное (комптоновское) рассеяние происходит тогда, когда энергия фотона намного больше энергии внутренней ионизации А и: hv >> А и.

При этом электрон отрывается от атома и приобретает некоторую кинетическую энергию Е к. Направление движения фотона при комптоновском рассеянии изменяется, а его энергия уменьшается:

Комптоновское рассеяние связано с ионизацией атомов вещества.

3. Фотоэффект имеет место тогда, когда энергия фотона hv достаточна для ионизации атома: hv > А и. При этом рентгеновский квант поглощается, а его энергия расходуется на ионизацию атома и сообщение кинетической энергии выбитому электрону Е к = hv - А И.

Комптоновское рассеяние и фотоэффект сопровождаются характеристическим рентгеновским излучением, так как после выбивания внутренних электронов происходит заполнение вакантных мест электронами внешних оболочек.

Рентгенолюминесценция. В некоторых веществах электроны и кванты комптоновского рассеяния, а также электроны фотоэффекта вызывают возбуждение молекул, которое сопровождается излучательными переходами в основное состояние. При этом возникает свечение, называемое рентгенолюминесценцией. Люминесценция платиносинеродистого бария позволила Рентгену открыть Х-лучи.

Закон ослабления

Рассеяние рентгеновских лучей и фотоэффект приводят к тому, что по мере проникновения рентгеновского излучения вглубь первичный пучок излучения ослабляется (рис. 32.5). Ослабление носит экспоненциальный характер:

Величина μ зависит от поглощающего материала и спектра излучения. Для практических расчетов в качестве характеристики ослабле-

Рис. 32.5. Ослабление рентгеновского потока в направлении падающих лучей

где λ - длина волны; Z - атомный номер элемента; k - некоторая константа.

32.5. Физические основы использования

рентгеновского излучения в медицине

В медицине рентгеновское излучение применяется в диагностических и терапевтических целях.

Рентгенодиагностика - методы получения изображений внутренних органов с использованием рентгеновских лучей.

Физической основой этих методов является закон ослабления рентгеновского излучения в веществе (32.10). Однородный по сечению поток рентгеновского излучения после прохождения неоднородной ткани станет неоднородным. Эта неоднородность может быть зафиксирована на фотопленке, флуоресцирующем экране или с помощью матричного фотоприемника. Например, массовые коэффициенты ослабления костной ткани - Са 3 (РО 4) 2 - и мягких тканей - в основном Н 2 О - различаются в 68 раз (μ m кости /μ m воды = 68). Плотность кости также выше плотности мягких тканей. Поэтому на рентгеновском снимке получается светлое изображение кости на более темном фоне мягких тканей.

Если исследуемый орган и окружающие его ткани имеют близкие коэффициенты ослабления, то применяют специальные контрастные вещества. Так, например, при рентгеноскопии желудка обследуемый принимает кашеобразную массу сульфата бария (ВаSО 4), у которого массовый коэффициент ослабления в 354 раза больше, чем у мягких тканей.

Для диагностики используют рентгеновское излучение с энергией фотонов 60-120 кэВ. В медицинской практике используют следующие методы рентгенодиагностики.

1. Рентгеноскопия. Изображение формируется на флуоресцирующем экране. Яркость изображения невелика, и его можно рассматривать только в затемненном помещении. Врач должен быть защищен от облучения.

Достоинством рентгеноскопии является то, что она проводится в реальном режиме времени. Недостаток - большая лучевая нагрузка на больного и врача (по сравнению с другими методами).

Современный вариант рентгеноскопии - рентгенотелевидение - использует усилители рентгеновского изображения. Усилитель воспринимает слабое свечение рентгеновского экрана, усиливает его и передает на экран телевизора. В результате резко уменьшилась лучевая нагрузка на врача, повысилась яркость изображения и появилась возможность видеозаписи результатов обследования.

2. Рентгенография. Изображение формируется на специальной пленке, чувствительной к рентгеновскому излучению. Снимки производятся в двух взаимно перпендикулярных проекциях (прямая и боковая). Изображение становится видимым после фотообработки. Готовый высушенный снимок рассматривают в проходящем свете.

При этом удовлетворительно видны детали, контрастности которых отличаются на 1-2 %.

В некоторых случаях перед обследованием пациенту вводится специальное контрастное вещество. Например, йодсодержащий раствор (внутривенно) при исследовании почек и мочевыводящих путей.

Достоинствами рентгенографии являются высокое разрешение, малое время облучения и практически полная безопасность для врача. К недостаткам относится статичность изображения (объект нельзя проследить в динамике).

3. Флюорография. При этом обследовании изображение, полученное на экране, фотографируется на чувствительную малоформатную пленку. Флюорография широко используется при массовом обследовании населения. Если на флюорограмме находят патологические изменения, то пациенту назначают более детальное обследование.

4. Электрорентгенография. Этот вид обследования отличается от обычной рентгенографии способом фиксации изображения. Вместо пленки используют селеновую пластину, которая электризуется под действием рентгеновских лучей. В результате возникает скрытое изображение из электрических зарядов, которое можно сделать видимым и перенести на бумагу.

5. Ангиография. Этот метод применяется при обследовании кровеносных сосудов. Через катетер в вену вводится контрастное вещество, после чего мощный рентгеновский аппарат выполняет серию снимков, следующих друг за другом через доли секунды. На рисунке 32.6 показана ангиограмма в районе сонной артерии.

6. Рентгеновская компьютерная томография. Этот вид рентгеновского обследования позволяет получить изображение плоского сечения тела толщиной несколько мм. При этом заданное сечение многократно просвечивается под разными углами с фиксацией каждого отдельного изображения в памяти компьютера. Затем

Рис. 32.6. Ангиограмма, на которой видно сужение в канале сонной артерии

Рис. 32.7. Сканирующая схема томографии (а); томограмма головы в сечении на уровне глаз (б).

осуществляется компьютерная реконструкция, результатом которой является изображение сканируемого слоя (рис. 32.7).

Компьютерная томография позволяет различать элементы с перепадом плотности между ними до 1 %. Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10-20 %.

Рентгенотерапия - использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности особенно быстро размножающихся клеток. Очень жесткое рентгеновское излучение (с энергией фотонов примерно 10 МэВ) используется для разрушения раковых клеток, находящихся глубоко внутри тела. Для уменьшения повреждений здоровых окружающих тканей пучок вращается вокруг пациента таким образом, чтобы под его воздействием все время оставалась только поврежденная область.

32.6. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

32.7. Задачи

1. Почему в медицинских рентгеновских трубках пучок электронов ударяет в одну точку антикатода, а не падает на него широким пучком?

Ответ: чтобы получить точечный источник рентгеновских лучей, дающий на экране резкие очертания просвечиваемых предметов.

2. Найти границу тормозного рентгеновского излучения (частоту и длину волны) для напряжений U 1 = 2 кВ и U 2 = 20 кВ.

4. Для защиты от рентгеновского излучения используются свинцовые экраны. Линейный показатель поглощения рентгеновского излучения в свинце равен 52 см -1 . Какова должна быть толщина экранирующего слоя свинца, чтобы он уменьшил интенсивность рентгеновского излучения в 30 раз?

5. Найти поток излучения рентгеновской трубки при U = 50 кВ, I = 1мА. Анод изготовлен из вольфрама (Z = 74). Найти КПД трубки.

6. Для рентгенодиагностики мягких тканей применяют контрастные вещества. Например, желудок и кишечник заполняют массой сульфата бария (ВаSО 4). Сравнить массовые коэффициенты ослабления сульфата бария и мягких тканей (воды).

7. Что даст более густую тень на экране рентгеновской установки: алюминий (Z = 13, ρ = 2,7 г/см 3) или такой же слой меди (Z = 29, ρ = 8,9 г/см 3)?

8. Во сколько раз толщина слоя алюминия больше толщины слоя меди, если слои ослабляют рентгеновское излучение одинаково?

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10 -5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым γ-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

31.1. УСТРОЙСТВО РЕНТГЕНОВСКОЙ ТРУБКИ. ТОРМОЗНОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двух-электродный ваккумный прибор (рис. 31.1). Подогревный катод 1 испускает электроны 4. Анод 2, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение 3 под углом к оси трубки. Анод изготовлен из хорошо теплопрово-дящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская трубка с вращающимся анодом (рис. 31.2).

В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение.

Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная

индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют еще сплошным. На рис. 31.3 представлены зависимости потока рентгеновского излучения от длины волны λ (спектры) при разных напряжениях в рентгеновской трубке: U 1 < U 2 < U 3 .

В каждом из спектров наиболее коротковолновое тормозное излучение λ ηίη возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

Заметим, что на основе (31.2) разработан один из наиболее точных способов экспериментального определения постоянной Планка.

Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким.

Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения, как это видно из рис. 31.3 и формулы (31.3), и увеличивают жесткость.

Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. На рис. 31.4 показаны спектры тормозного рентгеновского излучения при одном напряжении, но при разной силе тока накала катода: / н1 < / н2 .

Поток рентгеновского излучения вычисляется по формуле:

где U и I - напряжение и сила тока в рентгеновской трубке; Z - порядковый номер атома вещества анода; k - коэффициент пропорциональности. Спектры, полученные от разных антикатодов при одинаковых U и I H , изображены на рис. 31.5.

31.2. ХАРАКТЕРИСТИЧЕСКОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ. АТОМНЫЕ РЕНТГЕНОВСКИЕ СПЕКТРЫ

Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует

характеристическому рентгеновскому излучению (рис. 31.6). Он возникает вследствие того, что ускоренные электроны проникают в глубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней (рис. 31.7), в результате высвечиваются фотоны характеристического излучения. Как видно из рисунка, характеристическое рентгеновское излучение состоит из серий K, L, М и т.д., наименование которых и послужило для обозначения электронных слоев. Так как при излучении K-серии освобождаются места в более высоких слоях, то одновременно испускаются и линии других серий.

В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. На рис. 31.8 показаны спектры различных элементов. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность видна из рис. 31.8 и известна как закон Мозли:

где v - частота спектральной линии; Z- атомный номер испускающего элемента; А и В - постоянные.

Есть еще одна разница между оптическими и рентгеновскими спектрами.

Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, O 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада (см. 32.1), который заключается в захвате ядром электрона с внутреннего слоя.

31.3. ВЗАИМОДЕЙСТВИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии hv фотона и энергии иони-зации 1 А и имеют место три главных процесса.

Когерентное (классическое) рассеяние

Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hv < А и.

Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгеноструктурного анализа (см. 24.7).

Некогерентное рассеяние (эффект Комптона)

В 1922 г. А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерент ным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации: hv > А и.

Это явление обусловлено тем, что при взаимодействии с атомом энергия hv фотона расходуется на образование нового рассеянного фотона рентгеновского излучения с энергией hv", на отрыв электрона от атома (энергия ионизации А и) и сообщение электрону кинетической энергии Е к:

hv= hv" + А и +Е к. (31.6)

1 Здесь под энергией ионизации понимают энергию, необходимую для удаления внутренних электронов за пределы атома или молекулы.

Так как во многих случаях hv >> А и и эффект Комптона происходит на свободных электронах, то можно записать приближенно:

hv = hv"+ E K . (31.7)

Существенно, что в этом явлении (рис. 31.9) наряду с вторичным рентгеновским излучением (энергия hv " фотона) появляются электроны отдачи (кинетическая энергия Е к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект

При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация).

Три основных процесса взаимодействия, рассмотренные выше, являются первичными, они приводят к последующим вторичным, третичным и т.д. явлениям. Так, например, ионизированные атомы могут излучать характеристический спектр, возбужденные атомы могут стать источниками видимого света (рентгенолюминесценция) и т.п.

На рис. 31.10 приводится схема возможных процессов, возникающих при попадании рентгеновского излучения в вещество. Может происходить несколько десятков процессов, подобных изображенному, прежде чем энергия рентгеновского фотона перейдет в энергию молекулярно-теплового движения. В итоге произойдут изменения молекулярного состава вещества.

Процессы, представленные схемой рис. 31.10, лежат в основе явлений, наблюдаемых при действии рентгеновского излучения на вещество. Перечислим некоторые из них.

Рентгенолюминесценция - свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют


в дозиметрии для количественной оценки действия этого вида излучения.

В результате многих процессов первичный пучок рентгеновского излучения ослабляется в соответствии с законом (29.3). Запишем его в виде:

I = I 0 е-/", (31.8)

где μ - линейный коэффициент ослабления. Его можно представить состоящим из трех слагаемых, соответствующих когерентному рассеянию μ κ , некогерентному μ ΗΚ и фотоэффекту μф:

μ = μ к + μ hk + μ ф. (31.9)

Интенсивность рентгеновского излучения ослабляется пропорционально числу атомов вещества, через которое этот поток проходит. Если сжать вещество вдоль оси X, например, в b раз, увеличив в b раз его плотность, то

31.4. ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В МЕДИЦИНЕ

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально λ 3), в чем проявляется большая проникающая способность жесткого излучения, и пропорционально третьей степени атомного номера вещества-поглотителя:

Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Рентгенодиагностику используют в двух вариантах: рентгеноскопия - изображение рассматривают на рентгенолюминесцирующем экране, рентгенография - изображение фиксируется на фотопленке.

Если исследуемый орган и окружающие ткани примерно одинаково ослабляют рентгеновское излучение, то применяют специальные контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария, можно видеть их теневое изображение.

Яркость изображения на экране и время экспозиции на фотопленке зависят от интенсивности рентгеновского излучения. Если его используют для диагностики, то интенсивность не может быть большой, чтобы не вызвать нежелательных биологических последствий. Поэтому имеется ряд технических приспособлений, улучшающих изображение при малых интенсивностях рентгеновского излучения. В качестве примера такого приспособления можно указать электронно-оптические преобразователи (см. 27.8). При массовом обследовании населения широко используется вариант рентгенографии - флюорография, при которой на чувствительной малоформатной пленке фиксируется изображение с большого рентгенолюминесцирующего экрана. При съемке используют линзу большой светосилы, готовые снимки рассматривают на специальном увеличителе.

Интересным и перспективным вариантом рентгенографии является метод, называемый рентгеновской томографией, и его «машинный вариант» - компьютерная томография.

Рассмотрим этот вопрос.

Обычная рентгенограмма охватывает большой участок тела, причем различные органы и ткани затеняют друг друга. Можно избежать этого, если периодически совместно (рис. 31.11) в противофазе перемещать рентгеновскую трубку РТ и фотопленку Фп относительно объекта Об исследования. В теле имеется ряд непрозрачных для рентгеновских лучей включений, они показаны кружочками на рисунке. Как видно, рентгеновские лучи при любом положении рентгеновской трубки (1, 2 и т.д.) проходят че-

рез одну и ту же точку объекта, являющуюся центром, относительно которого совершается периодическое движение РТ и Фп. Эта точка, точнее небольшое непрозрачное включение, показана темным кружком. Его теневое изображение перемещается вместе с Фп, занимая последовательно положения 1, 2 и т.д. Остальные включения в теле (кости, уплотнения и др.) создают на Фп некоторый общий фон, так как рентгеновские лучи не постоянно затеняются ими. Изменяя положение центра качания, можно получить послойное рентгеновское изображение тела. Отсюда и название - томография (послойная запись).

Можно, используя тонкий пучок рентгеновского излучения, экран (вместо Фп), состоящий из полупроводниковых детекторов ионизирующего излучения (см. 32.5), и ЭВМ, обработать теневое рентгеновское изображение при томографии. Такой современный вариант томографии (вычислительная или компьютерная рентгеновская томография) позволяет получать послойные изображения тела на экране электронно-лучевой трубки или на бумаге с деталями менее 2 мм при различии поглощения рентгеновского излучения до 0,1%. Это позволяет, например, различать серое и белое вещество мозга и видеть очень маленькие опухолевые образования.

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.