Расчет погрешностей емкости с помощью коэффициента Стьюдента. Расчет погрешности измерения мощности и сопротивления. Абсолютная и относительная погрешность Пример расчета абсолютной погрешности измерений

В наш век человек придумал и использует огромное множество всевозможных измерительных приборов. Но какой бы совершенной ни была технология их изготовления, все они имеют большую или меньшую погрешность. Этот параметр, как правило, указывается на самом инструменте, и для оценки точности определяемой величины нужно уметь разбираться в том, что означают указанные на маркировке цифры. Кроме того, относительная и абсолютная погрешность неизбежно возникает при сложных математических расчетах. Она широко применяется в статистике, промышленности (контроль качества) и в ряде других областей. Как рассчитывается эта величина и как трактовать ее значение - об этом как раз и пойдет речь в данной статье.

Абсолютная погрешность

Обозначим через х приближенное значение какой-либо величины, полученное, к примеру, посредством однократного измерения, а через х 0 - ее точное значение. Теперь вычислим модуль разности между этими двумя числами. Абсолютная погрешность - это как раз и есть то значение, что получилось у нас в результате этой нехитрой операции. Выражаясь языком формул, данное определение можно записать в таком виде: Δ x = | x - x 0 |.

Относительная погрешность

Абсолютное отклонение обладает одним важным недостатком - оно не позволяет оценить степень важности ошибки. Например, покупаем мы на рынке 5 кг картофеля, а недобросовестный продавец при измерении веса ошибся на 50 грамм в свою пользу. То есть абсолютная погрешность составила 50 грамм. Для нас такая оплошность будет сущей мелочью и мы даже не обратим на нее внимания. А представьте себе, что случится, если при приготовлении лекарства произойдет подобная ошибка? Тут уже все будет намного серьезней. А при загрузке товарного вагона наверняка возникают отклонения намного больше данного значения. Поэтому сама по себе абсолютная погрешность малоинформативная. Кроме нее очень часто дополнительно рассчитывают относительное отклонение, равное отношению абсолютной погрешности к точному значению числа. Это записывается следующей формулой: δ = Δ x / x 0 .

Свойства погрешностей

Предположим, у нас есть две независимые величины: х и у. Нам требуется рассчитать отклонение приближенного значения их суммы. В этом случае мы может рассчитать абсолютную погрешность как сумму предварительно рассчитанных абсолютных отклонений каждой из них. В некоторых измерениях может произойти так, что ошибки в определении значений x и y будут друг друга компенсировать. А может случиться и такое, что в результате сложения отклонения максимально усилятся. Поэтому, когда рассчитывается суммарная абсолютная погрешность, следует учитывать наихудший из всех вариантов. То же самое справедливо и для разности ошибок нескольких величин. Данное свойство характерно лишь для абсолютной погрешности, и к относительному отклонению его применять нельзя, поскольку это неизбежно приведет к неверному результату. Рассмотрим эту ситуацию на следующем примере.

Предположим, измерения внутри цилиндра показали, что внутренний радиус (R 1) равен 97 мм, а внешний (R 2) - 100 мм. Требуется определить толщину его стенки. Вначале найдем разницу: h = R 2 - R 1 = 3 мм. Если в задаче не указывается чему равна абсолютная погрешность, то ее принимают за половину деления шкалы измерительного прибора. Таким образом, Δ(R 2) = Δ(R 1) = 0,5 мм. Суммарная абсолютная погрешность равна: Δ(h) = Δ(R 2) +Δ(R 1) = 1 мм. Теперь рассчитаем относительно отклонение всех величин:

δ(R 1) = 0,5/100 = 0,005,

δ(R 1) = 0,5/97 ≈ 0,0052,

δ(h) = Δ(h)/h = 1/3 ≈ 0,3333>> δ(R 1).

Как видим, погрешность измерения обоих радиусов не превышает 5,2%, а ошибка при расчете их разности - толщины стенки цилиндра - составила целых 33,(3)%!

Следующее свойство гласит: относительное отклонение произведения нескольких числе примерно равно сумме относительных отклонений отдельных сомножителей:

δ(ху) ≈ δ(х) + δ(у).

Причем данное правило справедливо независимо от количества оцениваемых величин. Третье и последнее свойство относительной погрешности состоит в том, что относительная оценка числа k-й степени приближенно в | k | раз превышает относительную погрешность исходного числа.

Пусть при измерениях систематические погрешности пренебрежимо малы. Рассмотрим случай, когда измерение проведено большое число раз (n→∞).

Как показывает опыт, отклонение результатов измерений от их среднего значения в большую или меньшую сторону одинаковы. Результаты измерений с малым отклонением от среднего значения наблюдается значительно чаще, чем с большими отклонениями.

Расположим все численные значения результатов измерений в ряд в порядке их возрастания и разделим этот ряд на равные интервалы
. Пусть– число измерений с результатом, попавшим в интервал [
]. Величина
есть вероятность ΔP i (х) получения результата со значением в интервале [
].

Графически представим
, соответствующее каждому интервалу [
] (рис.1). Изображенная на рис.1 ступенчатая кривая называется гистограммой. Допустим, что измерительный прибор обладает чрезвычайно высокой чувствительностью. Тогда ширину интервала можно сделать бесконечно малой величинойdx. Ступенчатая кривая в этом случае заменяется кривой, представляемой функцией φ(х) (рис.2). Функцию φ(х) принято называть функцией плотности распределения. Её смысл состоит в том, что произведение φ(х)dx есть вероятность dP(x) получения результатов со значением в интервале от х до х+dх. Графически значение вероятности представляется в виде площади заштрихованного прямоугольника. Аналитически функция плотности распределения записывается следующим образом:

. (5)

Представленную в виде (5) функцию φ(х) называют функцией Гаусса, а соответствующее распределение результатов измерений Гауссовым или нормальным.

Параметры
иσ имеют следующий смысл (рис.2).

–среднее значение результатов измерений. При
=
функция Гаусса достигает максимального значения. Если число измерений бесконечно велико, то
равно истинному значению измеряемой величины.

σ – характеризует степень разброса результатов измерения от их среднего значения. Параметр σ вычисляется по формуле:

. (6)

Этот параметр представляет собой среднеквадратичную погрешность. Величину σ 2 в теории вероятностей называют дисперсией функции φ(х).

Чем выше точность измерений, тем ближе располагаются результаты измерений к истинному значению измеряемой величины, и, следовательно, меньше σ.

Вид функции φ(х), очевидно, не зависит от числа измерений.

В теории вероятностей показано, что 68% всех измерений дадут результат, который располагается в интервале , 95% – в интервале и 99,7% в интервале .

Таким образом, с вероятностью (надёжностью) 68% величина отклонения результата измерения от среднего значения лежит в интервале [
], с вероятностью (надёжностью) 95% – в интервале [
] и с вероятностью (надежностью) 99,7% – в интервале [
].

Интервал, соответствующий той или иной вероятности отклонения от среднего значения, называется доверительным.

В реальных экспериментах число измерений, очевидно, не может быть бесконечно большим, поэтому маловероятно, чтобы
совпало с истинным значением измеряемой величины
. В связи с этим важно оценить на основе теории вероятностей величину возможного отклонения
от
.

Расчеты показывают, что при числе измерений более 20 с вероятностью 68%
попадает в доверительный интервал [
], с вероятностью 95% – в интервале[
], с вероятностью 99,7% – в интервале [
].

Величина , определяющая границы доверительного интервала, называется стандартным отклонением или просто – стандартом.

Стандарт вычисляется по формуле:

. (7)

С учетом формулы (6), выражение (7) приобретает следующий вид:

. (8)

Чем больше число измерений n, тем ближе Х располагается к
. Если число измерений не велико меньше 15, то вместо распределения Гаусса используют распределение Стьюдента, которое приводит к увеличению ширины доверительного интервала возможного отклонения Х от
вt n , p раз.

Сомножитель t n , p называется коэффициентом Стьюдента. Индексы Р и n указывают, с какой надежностью и какому числу измерений соответствует коэффициент Стьюдента. Величина коэффициента Стьюдента для данного числа измерений и заданной надежности определяется по таблице 1.

Таблица 1

Коэффициент Стьюдента.

Например, при заданной надежности 95% и числе измерений n=20 коэффициент Стьюдента t 20,95 =2,1 (доверительный интервал
) при числе измеренийn=4, t 4,95 =3,2 (доверительный интервал
). То есть, при увеличении числа измерений с 4 до 20 возможное отклонение
отX уменьшается в 1,524 раза.


Ниже приводится пример расчета абсолютной случайной погрешности

Х i –

(Х i – ) 2

По формуле (2) находим среднее значение измеряемой величины
(без указания размерности физической величины)

.

По формуле (8) вычисляем величину стандартного отклонения

.

Коэффициент Стьюдента, определенный для n=6, и Р=95%, t 6,95 =2,6 окончательный результат:

Х=20,1±2,6·0,121=20,1±0,315 (с Р=95%).

Вычисляем относительную погрешность:

.

При записи окончательного результата измерений нужно иметь в виду, что погрешность должна содержать только одну значащую цифру (отличную от нуля). Две значащие цифры в погрешности записываются лишь в том случае, если предпоследняя цифра 1. Большее число значащих цифр записывать бесполезно, поскольку они будут не достоверны. В записи среднего значения измеряемой величины последняя цифра должна принадлежать тому же разряду, что и последняя цифра в записи погрешности.

Х=(243±5)·10 2 ;

Х=232,567±0,003.

При проведении нескольких измерений может получится один и тот же результат. Это возможно в том случае, если чувствительность измерительного прибора низкая. Когда измерение производится прибором с низкой чувствительностью достаточно и однократного измерения. Не имеет смысла, например, многократно измерять длину стола рулеткой с сантиметровыми делениями. Результат измерения в этом случае будет один и тот же. Погрешность при проведении однократного измерения определяется ценой наименьшего деления прибора. Она называется приборной погрешностью. Её значение
вычисляется по следующей формуле:

, (10)

где γ – цена деления прибора;

t ∞, p – коэффициент Стьюдента, соответствующий бесконечно большому числу измерений.

С учетом приборной погрешности, абсолютная погрешность с заданной надежностью определяется по формуле:

, (11)

где
.

С учетом формул (8) и (10), (11) записывается так:

. (12)

В литературе для сокращения записи величину погрешности иногда не указывают. Предполагается, что величина погрешности составляет половину единицы последней значащей цифры. Так, например, величина радиуса Земли записана в виде
м. Это означает, что в качестве погрешности следует взять величину, равную ±
м.

Оценка погрешностей результатов измерений

Погрешности измерений и их типы

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т. д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т. е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от https://pandia.ru/text/77/496/images/image002_131.gif" width="85" height="23 src=">с..gif" width="16" height="17 src="> и X – соответственно истинное и измеренное значения исследуемой величины. Величина называется абсолютной погрешностью (ошибкой) измерения, а выражение , характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т. д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т. д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т. п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2. Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙103 кг/м3, то абсолютная погрешность в этом случае равна https://pandia.ru/text/77/496/images/image009_52.gif" width="123" height="24 src=">используется формула

, (1)

где https://pandia.ru/text/77/496/images/image012_40.gif" width="16" height="24">, - частные производные функции по переменной https://pandia.ru/text/77/496/images/image014_34.gif" width="65 height=44" height="44">.

Частные производные по переменным d и h будут равны

Https://pandia.ru/text/77/496/images/image017_27.gif" width="71" height="44 src=">.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с имеет следующий вид

,

где и приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

https://pandia.ru/text/77/496/images/image016_30.gif" width="12 height=23" height="23">.gif" width="45" height="21 src="> - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки , σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17">- среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше https://pandia.ru/text/77/496/images/image027_14.gif" width="15" height="17 src=">, а случайная абсолютная погрешность , то результат измерений запишется в виде https://pandia.ru/text/77/496/images/image029_11.gif" width="45" height="19"> до , в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку https://pandia.ru/text/77/496/images/image025_16.gif" width="19 height=24" height="24"> близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ , используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

1) определить доверительный интервал, задаваясь определенной вероятностью;

2) выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

Проводятся измерения заданного физического параметра n раз в одинаковых условиях, и результаты записываются в таблицу. Если результаты некоторых измерений резко отличаются по своему значению от остальных измерений, то они как промахи отбрасываются, если после проверки не подтверждаются. Вычисляется среднее арифметическое из n одинаковых измерений. Оно принимается за наиболее вероятное значение измеряемой величины

Находятся абсолютные погрешности отдельных измерений Вычисляются квадраты абсолютных погрешностей отдельных измерений (Δх i)2 Определяется средняя квадратичная ошибка среднего арифметического

.

Задается значение доверительной вероятности α. В лабораториях практикума принято задавать α=0,95. Находится коэффициент Стьюдента для заданной доверительной вероятности α и числа произведенных измерений (см. табл.) Определяется случайная погрешность

Определяется суммарная погрешность

Оценивается относительная погрешность результата измерений

.

Записывается окончательный результат в виде

С α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины https://pandia.ru/text/77/496/images/image045_6.gif" width="75" height="24">, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется , а затем определяется среднее арифметическое из всех значений yi

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений..gif" width="75" height="24">. В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

. (10)

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y. Задание доверительной вероятности α, нахождение коэффициента Стьюдента https://pandia.ru/text/77/496/images/image048_2.gif" width="83" height="23">, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

№ измерения

5.4. Вычисление суммарной погрешности

Абсолютная погрешность

; .

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование , интегрирование, решение уравнения и др.

Графики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т. е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Классы точности приборов

Класс точности средства измерения определяет пределы допускаемых основной и дополнительной погрешностей. Эти пределы выражаются в форме приведенной относительной, относительной или абсолютной погрешностей. Если аддитивная погрешность средства измерений преобладает над мультипликативной, то класс точности выражается в виде приведенной относительной погрешности:

где р – отвлеченное положительное число, выбираемое из ряда (n = 1, 0, -1, -2, -3…). Для аналоговых приборов обычно р принимает значения 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4.

Если мультипликативная погрешность средства измерения преобладает над аддитивной, то класс точности выражается через относительную погрешность:

Для средств измерений с аддитивной и мультипликативной погрешностями класс точности выражается двучленной формулой:

где и - числа из приведенного выше ряда, причем , - конечное значение диапазона измерений прибора, - измеренное значение. Обычно такой способ выражения класса точности используется для цифровых приборов, многозначных мер и приборов сравнения.

У аналоговых приборов обозначение класса точности выносится на лицевую панель. Если класс точности равен относительной приведенной погрешности, то класс точности обозначается в виде числа из приведенного выше ряда, например, 0,5 . Если шкала прибора существенно неравномерная, то класс точности обозначается в виде числа с галочкой, например , а если класс точности выражается через относительную погрешность, то число из ряда заключается в скобки, например (2,5) или в окружность.

Для средств измерений с аддитивной и мультипликативной погрешностями класс точности выражается в виде дроби , например 0,02/0,01 .

Погрешности измерения можно разделить на три класса:

а) систематические; б) случайные; в) промахи.

К систематическим погрешностям относятся:

- инструментальные погрешности, которые, в свою очередь, складываются из приборной погрешности (класс точности) и погрешности от взаимодействия средства измерения с источником сигнала (зависит от входного сопротивления прибора);

- дополнительные погрешности из-за влияния внешних факторов (температура, магнитное поле и т. п.);

- личные погрешности , вызываемые индивидуальными особенностями наблюдателя;

Погрешности метода измерений .

Например, погрешность от взаимодействия средства измерения с источником сигнала при измерении тока в цепи с сопротивлением и сопротивлении амперметра равна:

Погрешность от взаимодействия средства измерения с источником сигнала при измерении напряжения на участке цепи сопротивлением и сопротивлении вольтметра равна:



Эти формулы применимы и при измерении мощности и энергии электрического тока.

Приборная погрешность зависит от класса точности. Если класс точности прибора выражается через приведенную погрешность , то относительная погрешность показания прибора будет равна для амперметра:

где - показание амперметра, - его номинальное значение.

Аналогично и для вольтметра:

Если класс точности выражается через относительную погрешность , то погрешность показания равна классу точности прибора.

Дополнительные погрешности, так же относящиеся к систематическим инструментальным погрешностям, обусловлены отклонением условий измерений от нормальных.

Так, например, в схемах амперметров с шунтами, так как шунты делают из манганина (сопротивление манганина практически не зависит от температуры), приходится применять схемы температурной компенсации. В простейшем случае последовательно с рамкой включают сопротивление r 1 из манганина, рис. 1.

Тогда температурный коэффициент сопротивления цепи рамки уменьшится и температурная погрешность будет определяться формулой:

где β 0 -температурный коэффициент сопротивления цепи рамки;

r 0 - сопротивление рамки, пружинок и соединительных проводов;

r ш - сопротивление шунта;

r 1 - добавочное сопротивление из манганина;

; - температура во время измерения.

В приборах высокого класса точности применяют последовательно-параллельную схему температурной компенсации.

При отсутствии температурной компенсации:

Температурная погрешность магнитоэлектрических вольтметров определяется формулой:

где - добавочное сопротивление из манганина.

Из формулы видно, что температурную погрешность вольтметра можно уменьшить, увеличивая добавочное сопротивление из манганина.

Для электромагнитных и электродинамических вольтметров температурная погрешность зависит от температурного коэффициента момента пружин и температурного коэффициента сопротивления катушек и определяется формулой:

где - температурный коэффициент момента пружинок (он отрицателен и составляет 0,2¸0,3% на 10°С).

Второй член этого выражения зависит от предела измерения прибора. Наибольшей погрешностью обладает вольтметр на самом низком пределе измерения, т.к. в этом случае минимально.

В электродинамических амперметрах с последовательной схемой соединения катушек и в электромагнитных амперметрах температура влияет только на упругие свойства пружин. Поэтому температурная погрешность их не превышает ±0,2% на 10°С и не требует специальных способов компенсации.

На электродинамические и электромагнитные вольтметры существенное влияние оказывает частота. Главной причиной расхождения их показаний на постоянном и переменном токе является наличие индуктивного сопротивления .

Частотная погрешность при переходе от постоянного тока к переменному рассчитывается как:

где r – сопротивление вольтметра на постоянном токе;

r а – активное сопротивление цепи вольтметра на переменном токе.

При частотах до 2000 Гц, на которых работают эти приборы, можно считать отличие и , обусловленное вихревыми токами, в толще меди обмотки и окружающих металлических частях пренебрежимо малым. Тогда, принимая r а r , получим:

Отклонение подвижной части выпрямительного прибора пропорционально средневыпрямленному значению протекающего через него тока. Поэтому измерить действующее значение переменного тока можно только в том случае, если известен коэффициент формы кривой переменного тока. Обычно шкалы выпрямительных приборов градуируются в действующих значениях при синусоидальной форме кривой, умножая для этого показания прибора на коэффициент формы =1,11 (так как для синусоиды ).

Если формы кривой отличаются от синусоидальной, в показаниях возникает погрешность, присущая методу измерения:

Методические погрешности обусловлены несовершенством метода измерения и, в частности, несовершенством схемы измерения. Так при косвенных измерениях сопротивления и мощности, потребляемой нагрузкой, методом амперметра и вольтметра обычно используют две схемы, рис. 2.

Погрешности измерения сопротивления ∆ и самого по схеме а) равны:

где и показания приборов.

Погрешности измерения по схеме б):

Субъективные или личные погрешности у опытных экспериментаторов обычно малы и ими пренебрегают по сравнению с другими составляющими суммарной систематической погрешности. Принято считать, что эта погрешность Δ отс,п (погрешность отсчитывания) не превышает 20% от постоянной прибора, т.е.

Поскольку погрешность измерениявеличинасуммарная, то припрямых измерениях:

а) Для вероятности Р = 1 находят предельные значения погрешности измерения Δ п путём арифметического суммирования предельных значений составляющих Δ i ,п:

Составляющими могут быть:

– основная погрешность Δ о,п;

– дополнительные погрешности Δ д,п;

– погрешность отсчитывания Δ отс,п;

– погрешность взаимодействия Δ вз,п.

При таком способе суммирования получается сильно завышенноее погрешности, ибо маловероятно, чтобы все составляющие оказались на своих пределах и были при этом одного и того же знака (плюс или минус). Зато этот способ даёт полную гарантию.

б) Для вероятности Р < 1 находят граничные значения погрешности измерения Δ гр путём статистического суммирования предельных значений составляющих Δ i ,п:

Δ гр = ± К .

Значение К зависит от законов распределения случайных величин Δ i и от задаваемого значения вероятности Р . Если законы распределения неизвестны, рекомендуется принять, что для всех составляющих это закон равномерной плотности. При этом из теории вероятностей следует, что значения К при разных значениях Р соответствуют приведённым в таблице:

Р 0,9 0,95 0,99
К 0,95 1,1 1,4

Суммарная погрешность при косвенных измеренияхнаходится по аналогичным формулам.

В этом случае известна функциональная зависимость результата косвенного измерения Y от аргументов Х 1 ; Х 2 ;…Х n :

(Пример: R = здесь Y = R ; Х 1 = U ; X 2 = I) .

Требуется найти погрешность ΔY , происходящую от погрешностей ΔХ 1 ; ΔХ 2 ;… ΔХ n .

Пусть: ΔY = Δ; ΔХ 1 = Δ 1 ; ΔХ 2 = Δ 2 ;… ΔХ n = Δ n , тогда по формуле полного дифференциала:

Предельные значения суммарной абсолютной погрешности:

При Р < 1 применяют статистическое суммирование:

где К зависит от задаваемого значения вероятности Р так же, как при прямых измерениях (см. табл.).

Таким образом, систематические погрешности измерения при тщательной постановке опыта могут быть учтены и даже устранены.

Случайные погрешности и промахи контролю не поддаются, так как они появляются в результате одновременного действия многих различных причин. Эти погрешности подчиняются законам больших чисел, поэтому здесь возможен только статистический учет, подчиняющийся теории вероятностей.

Случайные погрешности и промахи обнаруживаются при многократных измерениях заданной величины в одних и тех же условиях.

Допустим, что мы проводим серию из n измерений одной и той же величины х . Из-за наличия случайных ошибок отдельные значения х 1 , х 2 , х 3, х n неодинаковы, и в качестве наилучшего значения искомой величины выбирается среднее арифметическое , равное арифметической сумме всех измеренных значений, деленной на число измерений:

где å - знак суммы, i - номер измерения, n - число измерений.

Итак, - значение, наиболее близкое к истинному. Истинного же значения никто не знает. Можно лишь рассчитать интервал Dх вблизи , в котором истинное значение может находиться с некоторой степенью вероятности р . Этот интервал называется доверительным интервалом . Вероятность, с которой истинное значение в него попадает, называется доверительной вероятностью, или коэффициентом надежности (так как знание доверительной вероятности позволяет оценить степь надежности полученного результата). При расчете доверительного интервала необходимая степень надежности задается заранее. Она определяется практическими потребностями (например, к деталям мотора самолета предъявляются более жесткие требования, чем к лодочному мотору). Очевидно, для получения большей надежности требуется увеличение числа измерений и их тщательности.

Благодаря тому, что случайные погрешности отдельных измерений подчиняются вероятностным закономерностям, методы математической статистики и теории вероятностей позволяют рассчитать среднюю квадратичную погрешность среднего арифметического значения сл. Запишем без доказательства формулу для расчета сл при малом числе измерений (n < 30).

Формулу называют формулой Стьюдента:

где t n, p - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности р .

Коэффициент Стьюдента находят по таблице, приведенной ниже, предварительно определив, исходя из практических потребностей (как было сказано выше), величины n и р .

При обработке результатов лабораторных работ достаточно провести 3-5 измерений, а доверительную вероятность принять равной0,68.

Но бывает так, что при многократных измерениях получаются одинаковые значения величины х . Например, 5 раз измерили диаметр проволоки и 5 раз получили одно и то же значение. Так вот, это вовсе не значит, что погрешности нет. Это значит только то, что случайная погрешность каждого измерения меньше точности прибора d, которую также называют приборной ,или инструментальной , погрешностью. Инструментальная погрешность прибора d определятся по классу точности прибора, указанному в его паспорте, либо указывается на самом приборе. А иногда принимается равной цене деления прибора (цена деления прибора - значение его самого маленького деления) либо половине цены деления (если на глаз приблизительно можно определить половину цены деления прибора).


Так как каждое из значений х i получено с погрешностью d, то полный доверительный интервал , или абсолютную погрешность измерения, рассчитывают по формуле:

Заметим, что если в формуле (П.3) одна из величин хотя бы в 3 раза больше другой, то меньшей пренебрегают.

Абсолютная погрешность сама по себе не отражает качества проведенных измерений. Например, только по информации абсолютная погрешность равна 0,002 м² нельзя судить о том, сколь хорошо было проведено данное измерение. Представление о качестве проведенных измерений дает относительная погрешность e, равная отношению абсолютной погрешности к среднему значению измеряемой величины. Относительная погрешность показывает, какую долю составляет абсолютная погрешность от измеренного значения. Как правило, относительную погрешность выражают в процентах:

Рассмотрим пример. Пусть диаметр шара измеряется с помощью микрометра, инструментальная погрешность которого d = 0,01 мм. В результате трех измерений получились следующие значения диаметра:

d 1 = 2,42 мм, d 2 = 2,44 мм, d 3 = 2,48 мм.

По формуле (П.1) определяют среднее арифметическое значение диаметра шара

Затем по таблице коэффициентов Стьюдента находят, что для доверительной вероятности 0,68 при трех измерениях t n, p = 1,3. После чего по формуле (П.2) рассчитывают случайную погрешность измерения Dd сл

Так как полученная случайная погрешность всего в два раза превышает приборную погрешность, то при нахождении абсолютной погрешности измерения Dd по (П.3) следует учитывать и случайную погрешность, и погрешность прибора, т. е.

Мм » ±0,03 мм.

Погрешность округлили до сотых миллиметра, так как точность результата не может превышать точность измерительного прибора, которая в данном случае составляет 0,01 мм.

Итак, диаметр проволоки равен

Данная запись говорит о том, что истинное значение диаметра шара с вероятностью 68 % лежит в интервале (2,42 ¸ 2,48) мм.

Относительная погрешность e полученного значения согласно (П.4) составляет