Дмитрий иванович менделеев считал главным своим научным достижением работы по экономике. –Число электронных слоев атомов не изменяется. Д.И. Менделеев о средней общеобразовательной школе

Тут один коллега посчитал, что Дмитрий Иванович Менделеев - "из раввинов". Мол, борода у него раввинская.

Странная ассоциация, хотя, да, борода на Карло-Марксовскую похожа, а тот действительно был внуком аж двух раввинов.

А лично меня со школы озадачивало явное несоответствие между делами Менделеева, его именем, внешностью с одной стороны и... чисто иудейской фамилией с другой! Посмотрите на портрет ниже: что же там семитского или иудейского? Русский мужик с... соколиным взором!

Спасибо коллеге evstoliya_3 , (некогда расфрендившей меня, скорее всего, за критику РПЦ ), которая ссылку на интересный материал о Дмитрии Ивановиче. Где, кстати, чётко объясняется и соколиный взгляд русского учёного.

А под Ярославлем, в селе Константиново, работает небольшой НПЗ (построенный моим прапрадедом Рагозиным Виктором Ивановичем). Там до сих пор сохранился интересный музей завода, где немало материалов посвящено периоду работы Менделеева в лаборатории предприятия . Есть и совершенно оригинальные материалы.

Музей же создан многолетними стараниями замечательной подвижницы в сохранении русской истории Галиной Владимировной Колесниченко . Которая отдала ему, фактически, всю свою трудовую жизнь. Также Галина Владимировна является автором интереснейшей монографии о русском олеонафте Викторе Ивановиче и вообще о роде Рагозиных. Почти 800 страниц, великолепное оформление, только тираж... сотня экземпляров (Братья Рагозины. Начало нефтяного дела России: Документальная биографическая повесть. — СПб.: Альфарет, 2009. — 756 с.).

А теперь - "".

*


Русскому человеку несвойственно размениваться на мелочи.

В чем уж тут дело - огромные ли пространства, зима ли по полгода, или отсутствие дорог, но именно в нашем отечестве граждане предпочитали замахиваться сразу на основы мироздания.

Казалось бы, калужскому учителю лучше было бы усовершенствовать слуховой аппарат, крайне ему необходимый, - так нет, Циолковский занялся межпланетными путешествиями и заселением других планет.

Прекрасный геохимик Вернадский - нет чтобы и дальше камешки изучать - придумал какой-то разумный слой на планете Земля, ноосферу. Буквально все события на Земле Чижевский объяснил влиянием Солнца.

Короче, не хочется в России копаться в мелочах, это пусть немец делает.


А у нас принято создавать всеобъемлющие - и чаще всего нелепые - теории при минимуме экспериментальных данных.

Но чудеса иногда случаются, попался бы только подходящий гений. Вот таким был Дмитрий Иванович Менделеев.

Все знают, что он открыл периодическую систему химических элементов.
Многие помнят, что он теоретически и практически обосновал оптимальную крепость водки. А ведь химии посвящены только около 9% из более 500 его научных работ.

А сколько ещё у этого гениального человека было увлечений, кроме науки!

Дмитрий Иванович Менделеев родился 27 января (8 февраля) 1834 года в селе Верхние Аремзяны неподалёку от Тобольска семнадцатым и последним ребёнком в семье Ивана Павловича Менделеева, в то время занимавшего должность директора Тобольской гимназии и училищ Тобольского округа.

Дед Дмитрия по отцовской линии был священником и носил фамилию Соколов; фамилию Менделеев получил отец Дмитрия в духовном училище в виде прозвища, что соответствовало обычаям того времени.

Мать Менделеева происходила из старинного, но обедневшего купеческого рода Корнильевых.

Окончив гимназию в Тобольске в 1849 году, по территориальному признаку Менделеев мог поступать в России только в Казанский университет. Но он так и не стал учеником Н.Н.Зинина. Поскольку Московский и Петербургский университеты для него был закрыты, он поступил в Петербургский педагогический институт на отделение естественных наук физико-математического факультета.

И не прогадал. В нём преподавали выдающиеся учёные того времени - М.В.Остроградский (математика), Э.Х. Ленц (физика), А.Н. Савич (астрономия), А.А. Воскресенский (химия), М.С. Куторга (минералогия), Ф.И. Рупрехт (ботаника), Ф.Ф. Брандт (зоология).

Еще студентом в 1854 году Дмитрий Иванович проводит исследования и пишет статью «Об изоморфизме», где установил отношения между кристаллической формой и химическим составом соединений, а также зависимость свойств элементов от величины их атомных объёмов. В 1856 г. защищает диссертацию «Об удельных объемах», на степень магистра химии и физики.

В это время пишет об энантоловосернистой кислоте и о различии реакций замещения, соединения и разложения.

В 1859 г. Менделеев был командирован за границу. В Гейдельберге занимался капиллярностью жидкостей. Открыл в 1860 году «температуру абсолютного кипения жидкостей», или критическую температуру.

Вернувшись, в 1861 году издаёт первый русский учебник «Органическая химия». В 1865-1887 годах создал гидратную теорию растворов. Развил идеи о существовании соединений переменного состава. В 1865 г. купил имение Боблово, где проводил исследования по агрохимии и сельскому хозяйству.

В 1868 году вместе с Зининым и другими учёными стал основателем Русского физико-химического общества .

В 1869 году Дмитрий Иванович Менделеев совершает величайшее открытие в истории химии - создает знаменитую периодическую систему элементов . В 1871 году выходит его книга «Основы химии» - первое стройное изложение неорганической химии. Над новыми изданиями этой работы Менделеев работал до конца жизни.

О создании таблицы:
Он закупил штук семьдесят пустых визитных карточек и на каждой из них написал с одной стороны название элемента, а с другой - его атомный вес и формулы его важнейших соединений. После этого он уселся за большой квадратный стол и начал по-всякому раскладывать эти карточки. Сначала у него ничего не получалось.

Десятки и сотни раз он их раскладывал, перетасовывал и снова раскладывал. При этом, как он потом вспоминал, в его сознании всплывали какие-то новые закономерности, и он с хорошо знакомым ему волнением, предшествующим открытию, продолжал свое занятие.

Так он проводил целые часы и дни, запершись в своем кабинете. Благо, к тому времени он уже был женат на Анне Григорьевне, которая сумела создать ему наилучшие условия для творческих занятий.

Легенду о том, что идея периодической таблицы пришла к нему во сне, Менделеев придумал специально для настырных поклонников, не ведающих о том, что такое творческое озарение. На самом же деле его просто осенило. Иными словами, ему сразу и окончательно стало ясно, в каком порядке надо разложить карточки, чтобы каждый элемент занял подобающееему место, согласно законам природы.

В 1871-1875 годы Менделеев изучает свойства упругости и расширения газов, исследует нефтяные углеводороды и вопросы происхождения нефти, о чем пишет несколько работ. Посещает Кавказ. В 1876 году едет в Америку, в Пенсильванию, осматривать американские нефтяные месторождения. Работы Менделеева в плане изучения нефтедобычи имели большое значение для стремительно развивающейся в России нефтяной отрасли промышленности.

Результатом одного из модных тогда увлечений стало исследование «О спиритизме».

С 1880 г. он начал интересоваться искусством, особенно русским, собирает художественные коллекции, а в 1894 г. избирается действительным членом Императорской академии художеств. Его портрет рисует Репин.

С 1891 г. Менделеев становится редактором химико-технического и фабрично-заводского отдела Энциклопедического словаря Брокгауза и Ефрона и многие из статей пишет сам. В качестве хобби Дмитрий Иванович делал чемоданы и сам себе шил одежду. Менделеев участвовал и в проектировании первого русского ледокола «Ермак».

В 1887 году Менделеев самостоятельно поднимается на воздушном шаре для наблюдения солнечного затмения. Полет был беспрецедентным и стал известен во всём мире. Вот как описывает этот случай Г.Чернеченко в номере 8 одной из газет от 19 августа 1999 года (статья так и называется: "Менделеев на воздушном шаре"):

В небольшом живописном имении Д.И. Менделеева Боблово готовились в "домашних" условиях наблюдать затмение солнца. И вдруг, когда до затмения оставалось немногим более недели, из Петербурга в Боблово пришла телеграмма. В ней Русское техническое общество извещало, что в Твери снаряжается воздушный шар для наблюдения затмения и что совет считает долгом заявить об этом, чтобы Менделеев в случае желания "лично мог воспользоваться поднятием шара для научных наблюдений".

Собственно ни сам полет, ни приглашение участвовать в нем не были для Менделеева большой неожиданностью. Лишь одно смущало великого химика: шар, наполненный светильным газом (другого в Твери не имелось), не мог подняться выше двух верст, и, значит, остался бы в плену облаков. Нужен был шар наполненный легким водородом Об этом он и сообщил в срочной телеграмме, ушедшей из Боблово в столицу.

Светало. Было пасмурно, накрапывал дождь. На пустыре между линией железной дороги и станцией покачивался шар, окруженный загородкой из жердей. Рядом вздымалась газодобывательная установка, у которой орудовали солдаты в прожженных кислотой рубахах.

"Ждали профессора Менделеева. В 6 часов 25 минут раздались аплодисменты, и из толпы к шару вышел высокого роста, немного сутулый, с лежащими по плечам волосами с проседью и длинной бородой человек. Это был профессор", - рассказывал читателям "Русских ведомостей" Владимир Гиляровский.

Минута затмения приближалась. Последние прощания. Высокий, стройный Кованько уже в корзине. Туда же с трудом пробирается сквозь паутину веревок Менделеев в коричневом пальто и охотничьих сапогах.

"В первый раз я входил в корзину шара, хотя, правда, однажды поднимался в Париже на привязном аэростате. Теперь мы оба были на месте", - рассказывал позже ученый

Дальнейшие события разыгрались в считанные секунды. Все вдруг увидели, как Менделеев что-то сказал своему спутнику, как Кованько выпрыгнул из корзины, и шар медленно пошел вверх. За борт полетел табурет и доска, служившая столом. Как назло отсыревший балласт превратился в плотный комок. Опустившись на дно корзины, Менделеев обеими руками выкидывал вниз мокрый песок.

Неожиданный полет Менделеева одного, исчезновение шара в облаках и вдруг нахлынувший мрак, по словам Гиляровского, "удручающе подействовали на всех, как-то жутко стало". Анну Ивановну увезли домой, в имение, оцепеневшую от ужаса. Тягостная атмосфера усилилась, когда в Клину была получена посланная кем-то невразумительная телеграмма: "Шар видели - Менделеева нет".

Между тем полет прошел успешно. Шар поднялся на высоту более трех километров, пробил облака, и Менделеев успел понаблюдать за полной фазой затмения. Правда, перед спуском ученому пришлось проявить не только бесстрашие, но и ловкость. Запуталась веревка, идущая от газового клапана. Менделеев взобрался на борт корзины и так, вися над пропастью, распутал клапанную веревку.

Шар благополучно опустился в Калязинском уезде Тверской губернии, крестьяне проводили Менделеева к соседнему поместью.

Весть о необычайно смелом полете русского профессора вскоре стала известна всему миру.
Французская Академия метеорологического воздухоплавания присудила Менделееву диплом «За проявленное мужество при полете для наблюдения солнечного затмения».

В 1888 году он по заданию правительства изучал в Донецкой области причины кризиса каменноугольной промышленности. Его работы «Письма о заводах», «Толковый тариф» содержали важные экономические предложения.

В 1890-1895 был консультантом Научно-технической лаборатории Морского министерства. В 1892 организовал производство изобретенного им бездымного пороха.

В 1892 году Менделеев назначается учёным-хранителем Депо образцовых гирь и весов. С 1893 года по его инициативе оно становится Главной палатой мер и весов. Сейчас это ВНИИ метрологии им. Д.И. Менделеева. В результате уже в 1899 г. в России был введен новый закон о мерах и весах, что способствовало развитию промышленности.

На один из юбилеев Дмитрию Ивановичу подарили драгоценные, изготовленные из чистого алюминия химические весы - электрохимический способ получения этого дешевого металла был тогда неизвестен, хотя в работах Менделеева есть указание и на эту технологию.

Американские физики синтезировали 101-й элемент таблицы и назвали его менделевием, на Земле есть минерал имени Менделеева, вулкан и подводный горный хребет Менделеева, а на обратной стороне Луны - кратер Менделеева.

Анекдоты рассказывают только про великих

Сложилась целая серия анекдотов про Дмитрия Ивановича Менделеева. Какие-то истории действительно происходили, а какие-то явно придуманы.

Например, есть история про посещение лаборатории Менделеева одним из великих князей. Знаменитый химик, дабы указать на бедственное положение лаборатории и выбить деньжат для исследований, велел завалить коридор, по которому должен был идти князь, всякой рухлядью и досками от забора. Проникшийся князь какие-то средства отпустил.

Другая, ставшая классической, история связана с хобби Менделеева - изготовлением чемоданов. Однажды извозчик с седоком в пролетке вдруг приподнялся с места, поклонился и приподнял шапку перед каким-то прохожим. Удивленный седок спросил: "Кто это?" - "О! - ответил извозчик. - Это известный чемоданных дел мастер Менделеев! " Надо отметить, что все это происходило, когда Дмитрий Иванович был уже всемирно признанным великим ученым.

А однажды в практически аналогичных обстоятельствах извозчик уважительно сообщил седоку, что это химик Менделеев. "Почему же его не арестовывают?" - удивился седок. Дело в том, что в те годы слово "химик" было синонимом слова "жулик".

Легенда о изобретении водки

Дмитрий Менделеев в 1865 году защитил докторскую диссертацию на тему «Рассуждение о соединении спирта с водою», нисколько с водкой не связанную. Менделеев, вопреки сложившейся легенде, водку не изобретал; она существовала задолго до него.

На этикетке «Русского стандарта» написано, что данная водка «соответствует стандарту русской водки высшего качества, утверждённому царской правительственной комиссией во главе с Д. И. Менделеевым в 1894 году». С именем Менделеева связывают выбор для водки крепости в 40°. Согласно информации «Музея Водки» в Санкт-Петербурге, Менделеев считал идеальной крепостью водки 38°, но это число было округлено до 40, для упрощения расчёта налога на алкоголь.

Однако в трудах Менделеева отыскать обоснование этого выбора не удаётся. Диссертация Менделеева, посвящённая свойствам смесей спирта и воды, никак не выделяет 40° или 38°. «Царская правительственная комиссия» никак не могла установить данный стандарт водки уже хотя бы потому, что эта организация — Комиссия для изыскания способов к упорядочению производства и торгового обращения напитков, содержащих в себе алкоголь, — была образована по предложению С. Ю. Витте только в 1895 году. Причём Менделеев выступал на её заседаниях в самом конце года и только по вопросу об акцизах.

Откуда же взялся 1894-й год? По-видимому, из статьи историка Вильяма Похлёбкина, который написал, что «спустя 30 лет после написания диссертации… соглашается войти в комиссию». Изготовители «Русского стандарта» прибавили метафорические 30 к 1864 году и получили искомую величину.

Водка крепостью в 40° получила широкое распространение уже в XVI веке. Она называлась полугар, поскольку при сжигании её объём уменьшался вдвое. Таким образом, проверка качества водки была проста и общедоступна, что и стало причиной её популярности.

«Я и сам удивляюсь, - писал в конце жизни Менделеев, - чего я только не делывал на своей жизни. И сделано, я думаю, недурно». Он был членом почти всех академий и почетным членом более 100 ученых обществ.

Менделеев провёл и опубликовал фундаментальные исследования по химии, химической технологии, педагогике, физике, минералогии, метрологии, воздухоплаванию, метеорологии, сельскому хозяйству, экономике. Все его работы были тесно связанны с потребностями развития производительных сил в России.

В начале XX века, Менделеев, отмечая, что население Российской империи за последние сорок лет удвоилось, вычислил, что к 2050 году её численность достигнет 800 млн. человек.

В январе 1907 года сам Д. И. Менделеев сильно простудился, показывая Палату мер и весов новому министру промышленности и торговли Философову.

Сначала был поставлен диагноз сухой плеврит, затем врач Яновский нашел у Дмитрия Ивановича воспаление легких. 19 января, в 5 часов не стало великого российского химика. Он был похоронен рядом со своим сыном на Волковском кладбище в Петербурге. Он купил для себя это место вскоре после смерти сына, оно находилось близ могилы матери Д. И. Менделеева.

Русский ученый Дмитрий Менделеев (1834-1907) больше всего известен благодаря его периодическому закону химических элементов, на основе которого им была построена таблица, знакомая каждому человеку еще со школьной скамьи. Однако на самом деле великий ученый интересовался самыми разными областями знаний. Открытия Менделеева связаны с химией, физикой, метрологией, экономикой, геологией, педагогикой, воздухоплаванием и т. д.

Периодический закон

Периодический закон - один из фундаментальных законов природы. Он заключается в том, что свойства химических элементов зависят от их атомного веса. Менделеев открыл периодический закон в 1869 году. Совершенная им научная революция была осознана химиками не сразу.

Русский исследователь предложил закономерную систему, с помощью которой оказалось возможным предсказать неизвестные тогда химические элементы и даже их свойства. После их скорого открытия (речь идет о галлии, германии и скандии) ученые с мировым именем начали признавать фундаментальность периодического закона.

Открытия Менделеева происходили в эпоху, когда наука пополнялась все новыми разрозненными фактами об окружающем нас мире. Из-за этого периодический закон и построенная на его основе периодическая таблица элементов оказались перед серьезными вызовами. Например, в 1890 гг. были открыты благородные газы и явление радиоактивности. Защищая свою теорию, Менделеев продолжал совершенствовать таблицу, соотнося ее со все новыми научными фактами. В химик поместил аргон, гелий и их аналоги в отдельную нулевую группу. Со временем фундаментальность периодического закона становилась все яснее и бесспорнее, а сегодня он по праву считается одним из величайших открытий в истории естественных наук.

Исследования силикатов

Периодический закон - крайне важная страница в истории науки, однако открытия Менделеева в области химии на нем не закончились. В 1854 году он исследовал финский ортит и пироксен. Также один из циклов работ Менделеева посвящен химии силикатов. В 1856 году ученый издал диссертационную работу «Удельные объемы» (в ней была дана оценка взаимосвязи между объемом вещества и его характеристиками). В главе, посвященной кремнеземным соединениям, Дмитрий Иванович подробно остановился на природе силикатов. Кроме того, он первым дал правильную трактовку явления стеклообразного состояния.

Газы

Ранние открытия Менделеева были связаны с еще одной химической и одновременно физической темой - исследованием газов. Ученый занялся ею, углубившись в поиск причин закона периодичности. В XIX веке в этой области науки ведущей была теория о «мировом эфире» - всепроникающей среде, через которую передается тепло, свет и гравитация.

Изучая данную гипотезу, русский исследователь пришел к нескольким важным выводам. Так совершились открытия Менделеева в физике, главным из которых можно назвать появление с универсальной газовой постоянной. Кроме того, Дмитрием Ивановичем была предложена собственная термодинамическая шкала температур.

Всего Менделеев издал 54 труда, посвященных газам и жидкостям. Самыми известными в этом цикле стали «Опыт химической концепции мирового эфира» (1904) и «Попытка химического понимания мирового эфира» (1905). В своих работах ученый использовал вириалные изложения и тем самым заложил основы современных уравнений для

Растворы

Растворы интересовали Дмитрия Менделеева на протяжении всей его научной карьеры. Относительно этой темы исследователь не оставил полной теории, а ограничился несколькими принципиальными тезисами. Самыми важными моментами касательно растворов он считал их отношение к соединениям, химизм и в растворах.

Все открытия Менделеева проверялись им с помощью экспериментов. Некоторые из них касались температуры кипения растворов. Благодаря детальному анализу темы, Менделеев в 1860 году пришел к выводу, что, переходя при кипении в пар, жидкость теряет теплоту испарения и поверхность натяжения вплоть до нулевого значения. Также учение Дмитрия Ивановича о растворах повлияло на становление теории

Менделеев критично относился к появившейся в его время теории об электролитической диссоциации. Не отрицая саму концепцию, ученый указывал на необходимость ее доработки, что напрямую было связано с его работами о химических растворах.

Вклад в воздухоплавание

Дмитрий Менделеев, открытия и достижения которого охватывают самые разные сферы человеческих знаний, интересовался не только теоретическими предметами, но и прикладными изобретениями. Конец XIX века прошел под знаком повышенного интереса к зарождавшемуся воздухоплаванию. Разумеется, русский эрудит не мог не обратить внимания на этот символ будущего. В 1875 году он создал проект собственного стратостата. Теоретически аппарат мог подниматься даже в верхние атмосферные слои. На практике первый такой полет произошел только пятьдесят лет спустя.

Другим изобретением Менделеева стал работающий на двигателях аэростат. Воздухоплавание интересовало ученого не в последнюю очередь в связи с другими его работами, связанными с метеорологией и газами. В 1887 году Менделеев совершил экспериментальный полет на аэростате. Воздушному шару удалось покрыть расстояние в 100 километров на высоте почти 4 километров. За полет химик получил золотую медаль Академии аэростатической метеорологии Франции. В своей монографии о вопросах сопротивления среды Менделеев посвятил воздухоплаванию один из разделов, в котором подробно описал свои взгляды на эту тему. Ученый интересовался разработками пионера авиации

Освоение Севера и кораблестроение

Прикладные открытия Менделеева, список которых можно продолжить таковыми в области кораблестроения, делались при сотрудничестве с исследовательскими географическими экспедициями. Так, Дмитрий Иванович первым предложил идею опытового бассейна - экспериментальной установки, необходимой для гидромеханических исследований судовых моделей. В реализации этой задумки ученому помог адмирал Степан Макаров. С одной стороны, бассейн нужен был для торговых и военно-технических целей, но в то же время он оказался полезным и для науки. Экспериментальную установку запустили в 1894 году.

Помимо всего прочего, Менделеев сконструировал ранний прототип ледокола. Ученый был включен в комиссию, выбравшую проект для государственного ассигнования первого в мире такого корабля. Им стал ледокол «Ермак», спущенный на воду в 1898 году. Менделеев занимался исследованиями морской воды (в том числе ее плотности). Материал для изучения ему предоставлял все тот же адмирал Макаров, побывавший в кругосветном путешествии на «Витязе». Открытия Менделеева в географии, связанные с темой покорения Севера, были изложены ученым в более чем 36 напечатанных работах.

Метрология

Помимо остальных наук, Менделеева интересовала метрология - наука о средствах и методах измерения. Ученый работал над созданием новых способов взвешивания. Как химик он был сторонником химических методов измерения. Открытия Менделеева, список которых пополнялся год от года, были не только научными, но и буквальными - в 1893 году Дмитрий Иванович открыл Главную палату мер и весов России. Также он изобрел собственную конструкцию арретира и коромысла.

Пироколлодийный порох

В 1890 году Дмитрий Менделеев отправился в длительную заграничную командировку, целью которой было знакомство с иностранными лабораториями по разработке взрывчатых веществ. Ученый занялся данной тематикой с подачи государства. В морском министерстве ему предложили внести свой вклад в развитие русского порохового дела. Инициатором командировки Менделеева был вице-адмирал Николай Чихачев.

Менделеев считал, что в отечественном пороходелии больше всего необходимо развивать экономическую и промышленную стороны. Также он настаивал на использовании в производстве исключительно российского сырья. Главным же итогом работы Дмитрия Менделеева в этой сфере стала разработка им в 1892 году нового пироколлодийного пороха, отличавшегося своей бездымностью. Военные специалисты высоко оценили качество этого взрывчатого вещества. Особенностью пироколлодийного пороха был его состав, в который входила подверженная растворимости нитроклетчатка. Готовя к производству новых порох, Менделеев хотел наделить его стабилизированным газообразованием. Для этого при изготовлении взрывчатого вещества были использованы дополнительные реагенты, в том числе всяческие присадки.

Экономика

На первый взгляд, открытия Менделеева в биологии или метрологии вовсе не связаны с его образом прославленного химика. Однако еще более отдаленными от этой науки были исследования ученого, посвященные экономике. В них Дмитрий Иванович подробно рассматривал направления развития хозяйства своей страны. Еще в 1867 году он вступил в первое отечественное объединение предпринимателей - Общество для содействия русской промышленности и торговли.

Менделеев видел будущее экономики в развитии независимых артелей и общин. Этот прогресс подразумевал конкретные реформы. Например, ученый предлагал сделать общину не просто сельскохозяйственной, а занятой фабрично-заводской деятельностью в зимний период, когда пустуют поля. Дмитрий Иванович выступал против перепродаж и любых форм спекуляции. В 1891 году он участвовал в разработке нового Таможенного тарифа.

Протекционизм и демография

Менделеев, открытия в области химии которого затмевают его успехи в гуманитарных науках, все свои экономические исследования вел с вполне практичной целью помощи России. В этой связи ученый был последовательным протекционистом (что, например, отразилось в его работах в отрасли пороходелия и его же письмах к царю Николаю II).

Менделеев изучал экономику неразрывно от демографии. Незадолго до смерти он в одной из своих работ отметил, что в 2050 году население России составит 800 миллионов человек. Прогноз ученого стал утопией после двух мировых и Гражданской войны, репрессий и других катаклизмов, обрушившихся на страну в XX столетии.

Опровержение спиритизма

Во второй половине XIX века Россию, как и весь остальной мир, охватила мода на мистицизм. Эзотерикой увлекались представители высшего света, богема и простые городские жители. Меж тем открытия Менделеева в химии, список которых состоит из множества пунктов, заслоняют его длительную борьбу с популярным тогда спиритизмом.

Ученый разоблачал приемы медиумов вместе с соратниками из Русского физического общества. С помощью ряда экспериментов с манометрическими и пирамидальными столиками, а также другими инструментами гипнотизеров Менделеев пришел к выводу, что спиритизм и похожие практики - лишь суеверие, на котором наживаются спекулянты и мошенники.

Периодическая система Дмитрия Ивановича Менделеева и её значение для естествознания

Введение

Открытие Д.И.Менделеевым закономерностей в строении материи оказалась очень важной вехой в развитии мировой науки и мысли. Гипотеза о том, что все вещества во Вселенной состоят лишь из нескольких десятков химических элементов в 19 веке казалась совершенно невероятной, но она была доказана «Периодической системой элементов» Менделеева.

Открытие периодического закона и разработка периодической системы химических элементов Д. И. Менделеевым явились вершиной развития химии в XIX веке. Обширная сумма знаний о свойствах 63 элементов, известных к тому времени, была приведена в стройный порядок.

Периодическая система элементов

Д. И. Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон.

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Весь ряд элементов, расположенных в порядке возрастания атомных масс, Менделеев разбил на периоды, внутри которых свойства элементов изменяются последовательно, разместив периоды так, чтобы выделить сходные элементы.

Однако, несмотря на огромную значимость такого вывода, периодический закон и система Менделеева представляли лишь гениальное обобщение фактов, а их физический смысл долгое время оставался непонятным. Лишь в результате развития физики XX века - открытия электрона, радиоактивности, разработки теории строения атома - молодой, талантливый английский физик Г. Мозле установил, что величина зарядов ядер атомов последовательно возрастает от элемента к элементу на единицу. Этим открытием Мозле подтвердил гениальную догадку Менделеева, который втрех местах периодической таблицы отошел от возрастающей последовательности атомных весов.

Так, при ее составлении Менделеев поставил 27 Со перед 28 Ni, 52 Ti перед 5 J, 18 Аг перед 19 К, несмотря на то, что это противоречило формулировке периодического закона, то есть расположению элементов в порядке увеличения их атомных весов.

Согласно закону Мозле заряды ядер данных элементов соответствовали положению их в таблице.

В связи с открытием закона Мозле современная формулировка периодического закона следующая:

свойство элементов, а так же формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов.

Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства Элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1-до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов; то и они периодически повторяются. В этом физический смысл периодического закона.

В качестве примера рассмотрим изменение свойств у первых и последних элементов периодов. Каждый период в периодической системе начинается элементами атомы, которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

Заканчивается период элементами, атомы которых на внешнем уровне содержат 2 (s 2) электрона (в первом периоде) или 8 (s 1 p 6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Ar, Kr, Xe, имеющие инертные свойства.

Именно вследствие сходства строения внешнего энергетического уровня похожи их физические и химические свойства.

В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабева-ют и возрастают неметаллические, заканчивается период инертным газом. В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабева-ют и возрастают неметаллические, заканчивается период инертным газом.

В свете учения о строении атома становится понятным разделение всех элементов на семь периодов, сделанное Д. И. Менделеевым. Номер периода соответствует числу энергетических уровней атома, то есть положение элементов в периодической системе обусловлено строением их атомов. В зависимости от того, какой подуровень заполняется электронами, все элементы делят на четыре типа.

1. s-элементы. Заполняется s-подуровень внешнего уровня (s 1 - s 2). Сюда относятся первые два элемента каждого периода.

2. р-элементы. Заполняется р-подуровень внешнего уровня (р 1 -- p 6)- Сюда относятся последние шесть элементов каждого периода, начиная со второго.

3. d-элементы. Заполняется d-подуровень последнего уровня (d1 - d 10), а на последнем (внешнем) уровне остается 1 или 2 электрона. К ним относятся элементы вставных декад (10) больших периодов, начиная с 4-го, расположенные между s- и p-элементами (их также называют переходными элементами).

4. f-элементы. Заполняется f-подуровень глубинного (треть его снаружи) уровня (f 1 -f 14), а строение внешнего электронного уровня остается неизменным. Это лантаноиды и актиноиды, находящиеся в шестом и седьмом периодах.

Таким образом, число элементов в периодах (2-8-18-32) соответствует максимально возможному числу электронов на соответствующих энергетических уровнях: на первом - два, на втором - восемь, на третьем - восемнадцать, а на четвертом - тридцать два электрона. Деление групп на подгруппы (главную и побочную) основано на различии в заполнении электронами энергетических уровней. Главную подгруппу составляют s - и p-элементы, а побочную подгруппу - d-элементы. В каждой группе объединены элементы, атомы которых имеют сходное строение внешнего энергетического уровня. При этом атомы элементов главных подгрупп содержат на внешних (последних) уровнях число электронов, равное номеру группы. Это так называемые - валентные электроны.

У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вто-рых снаружи) уровней, в чем и состоит основное различие в свойствах элементов главных и побочных подгрупп.

Отсюда следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом заключается физический смысл номера группы.

С позиций теории строения атома легко объясняется возрастание металлических свойств элементов в каждой группе с ростом заряда ядра атома. Сравнивая, например, распределение электронов по уровням в атомах 9 F (1s 2 2s 2 2р 5) и 53J (1s 2 2s 2 2р 6 3s 2 Зр 6 3d 10 4s 2 4р 6 4 d 10 5s 2 5p 5) можно отметить, что у них по 7 электронов на внешнем уровне, что указывает на сходство свойств. Однако внешние электроны в атоме йода находятся дальше от ядра и поэтому слабее удерживаются. По этой причине атомы йода могут отдавать электроны или, иными словами, проявлять металлические свойства, что нехарактерно для фтора.

Итак, строение атомов обуславливает две закономерности:

а) изменение свойств элементов по горизонтали - в периоде слева направо ослабляются металлические и усиливаются неметаллические свойства;

б) изменение свойств элементов по вертикали - в группе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.

Таким образом: по мере возрастания заряда ядра атомов химических элементов периодически изменяется строение их электронных оболочек, что является причиной периодического изменения их свойств.

Структура периодической Системы Д. И. Менделеева.

Периодическая система Д. И. Менделеева подразделяется на семь периодов – горизонтальных последовательностей элементов, расположенных по возрастанию порядкового номера, и восемь групп – последовательностей элементов обладающих однотипной электронной конфигурацией атомов и сходными химическими свойствами.

Первые три периода называются малыми, остальные – большими. Первый период включает два элемента, второй и третий периоды – по восемь, четвёртый и пятый – по восемнадцать, шестой – тридцать два, седьмой (незавершённый) – двадцать один элемент.

Каждый период (исключая первый) начинается щелочным металлом и заканчивается благородным газом.

Элементы 2 и 3 периодов называются типическими.

Малые периоды состоят из одного ряда, большие – из двух рядов: чётного (верхнего) и нечётного (нижнего). В чётных рядах больших периодов расположены металлы, и свойства элементов слева направо изменяются слабо. В нечётных рядах больших периодов свойства элементов изменяются слева направо, как у элементов 2 и 3 периодов.

В периодической системе для каждого элемента указывается его символ и порядковый номер, название элемента и его относительная атомная масса. Координатами положения элемента в системе является номер периода и номер группы.

Элементы с порядковыми номерами 58-71, именуемыми лантаноидами, и элементы с номерами 90-103 - актиноиды – помещаются отдельно внизу таблицы.

Группы элементов, обозначаемые римскими цифрами, делятся на главные и побочные подгруппы. Главные подгруппы содержат 5 элементов (или более). В побочные подгруппы входят элементы периодов, начиная с четвёртого.

Химические свойства элементов обуславливаются строением их атома, а точнее строением электронной оболочки атомов. Сопоставление строения электронных оболочек с положением элементов в периодической системе позволяет установить ряд важных закономерностей:

1. Номер периода равен общему числу энергетических уровней, заполняемых электронами, у атомов данного элемента.

2. В малых периодах и нечётных рядах больших периодов с ростом положительного заряда ядер возрастает число электронов на внешнем энергетическом уровне. С этим связано ослабление металлических и усиление неметаллических свойств элементов слева направо.

Номер группы, указывает число электронов, которые могут участвовать в образовании химических связей (валентных электронов).

В подгруппах с ростом положительного заряда ядер атомов элементов усиливаются их металлические и ослабляются неметаллические свойства.

История создания Периодической системы

Дмитрий Иванович Менделеев в октябре 1897 году писал в статье «Периодическая законность химических элементов»:

- После открытий Лавуазье понятие о химических элементах и простых телах так укрепилось, что их изучение положено в основу всех химических представлений, а вследствие того взошло и во все естествознание. Пришлось признать, что все вещества, доступные исследованию, содержат очень ограниченное число материально разнородных элементов, друг в друга не превращающихся и обладающих самостоятельною весомою сущностью и что все разнообразие веществ природы определяется лишь сочетанием этих немногих элементов и различием или их самих, или их относительного количества, или при одинаковости качества и количества элементов - различием их взаимного положения, соотношения или распределения. «Простыми» телами должно при этом назвать вещества, содержания лишь один какой-либо элемент, «сложными» - два или более. Но для данного элемента могут существовать многие видоизменения простых тел, ему отвечающих, зависящие от распределения («строения») его частей или атомов, т.е. от того вида изомерии, который называется «аллотропией». Так углерод, как элемент, является в состоянии угля, графита и алмаза, которые (взятые в чистом виде) дают при сжигании один и тот же углекислый газ и в том же количестве. Для самих же «элементов» ничего подобного не известно. Они видоизменениям и взаимным превращениям не подвергаются и представляют, по современным воззрениям, неизменную сущность изменяющегося (химически, физически и механически) вещества, входящую как в простые, так и в сложные тела.

Весьма, в древности и до ныне, распространенное представление о «единой или первичной» материи, из которой слагается все разнообразие веществ, опытом не подтверждено, и все попытки, к сему направленные, оказались его опровергающими. Алхимики верили в превращение металлов друг в друга, доказывали это разными способами, но при поверке все оказалось или обманом (особенно в отношении к производству золота из других металлов), или ошибкой и неполнотой опытного исследования. Однако, нельзя не заметить, что если бы завтра оказалось, что металл А превращается целиком или отчасти в другой металл В, то из этого вовсе не будет еще следовать, что простые тела способны друг в друга превращаться вообще, как, например, из того, что долгое время закись урана считали за простое тело, а она оказалась содержащей кислород и действительный металлический уран - вовсе не следует делать никакого общего заключения, а можно только в частности судить о бывшей и современной степенях знакомства с ураном, как самостоятельным элементом. С этой точки зрения должно взглянуть и на оповещенное Емменсом (Stephen - Н. Emmeus) превращение мексиканского серебра отчасти в золото (май-июнь 1897 г.), если справедливость наблюдений оправдается и Argentaurum не окажется подобным алхимистическим оповещением подобного же рода, не раз бывшим и также прикрывавшемся покровом секрета и денежного интереса. Что холод и давление могут содействовать перемене строения и свойств - давно известно, хотя бы по примеру олова Фрицше, но нет фактов, позволяющих предполагать, что изменения эти идут столь глубоко и доходят не до строения частиц, а до того, что ныне считается атомами и элементами, а потому утверждаемое Емменсом превращение (хотя бы и постепенно) серебра в золото будет оставаться сомнительным и мaлозначущим даже в отношении к серебру и золоту, пока, во-первых, «секрет» не будет на столько раскрыт, что опыт может быть всеми воспроизведен, и во-вторых, пока обратный переход (при накаливании и уменьшении давления?) золота в серебро не будет установлен, или пока не будет установлена фактическая его невозможность или трудность. Легко понять, что переход спирта углекислоты в сахар труден, хотя обратный идет легко, потому что сахар бесспорно сложнее спирта и углекислоты. И мне кажется очень мало вероятным переход серебра в золото, если обратно - золото не будет переходить в серебро, потому что атомный вес и плотность золота чуть не в два раза более, чем серебра, из чего должно, по всему известному в химии, заключить, что если серебро и золото произошли из одного материала, то золото сложнее серебра и должно превращаться в серебро легче, чем обратно. Поэтому я думаю, что г. Емменсу для убедительности не только следовало бы раскрыть «секрет», но и попробовать, да и показать, если можно, превращение золота в серебро, тем более, что при получении из дорогого металла другого, в 30 раз более дешевого, денежные интересы будут, очевидно, на далеком плане, а интересы правды и истины окажутся явно на первом, теперь же дело представляется, на мой взгляд, с обратной стороны.

При таком представлении о химических элементах - они оказываются чем-то отвлеченным, так как в отдельности мы их не видим и не знаем. К такому почти идеалистическому представлению столь реалистическое знание, как химия, пришло по совокупности всего доныне наблюденного, и если это представление можно отстаивать, то лишь как предмет глубоко укоренившегося убеждения, доныне оказавшегося совершенно согласным с опытом и наблюдением. В этом смысле понятие о химических элементах имеет глубоко реальное основание во всей науке о природе, так как, например, углерод нигде, никогда, никем и нисколько не превращен в какой-либо другой элемент, тогда как простое тело - уголь превращено в графит и алмаз и, быть может, когда-нибудь можно будет превратить его и в вещество жидкое или газообразное, если удастся найти условия упрощения сложнейших частиц угля. Главное понятие, с которым возможно приступить к объяснению П. законности, состоит именно в коренном различии представлений об элементах и о простых телах. Углерод - элемент, нечто неизменное, содержащееся, как в угле, так и в углекислом газе или в светильном, как в алмазе, так и в массе изменчивых органических веществ, как в известняке, так и в дереве. Это - не конкретное тело, а весомое (материальное) вещество с суммой свойств. Как в парах воды или в снеге нет конкретного тела - жидкой воды, а есть то же весомое вещество с суммой ему одному принадлежащих свойств, так во всем углеродистом содержится материально-однородный углерод: не уголь, а именно углерод. Простые тела суть вещества, содержащие только один какой-либо элемент, и понятие о них становится прозрачно-ясным только тогда, когда признается укрепившееся представление об атомах и частицах или молекулах, из которых слагаются однородные вещества; причем понятию об элементе отвечает атом, а простому телу - частица. Простые тела, как и все тела природы, составлены из частиц: вся их разница от сложных тел состоит лишь в том, что частицы сложных тел содержат разнородные атомы двух или многих элементов, а частицы простых тел - однородные атомы данного элемента. Все, что излагается далее, должно относить именно к элементам, т.е. напр. к углероду, водороду и кислороду, как составным частям сахара, дерева, воды, угля, кислородного газа, озона и т.п., но не простым телам, элементами образуемыми. При этом, очевидно, является вопрос: как же можно находить какую-либо реальную законность в отношении к таким предметам, как элементы, существующие лишь как представления современных химиков, и что же реально осуществимое можно ожидать, как следствие из расследования каких-то отвлеченностей? Действительность отвечает на подобные вопросы с полною ясностью: отвлечения, если они правдивы (содержат элементы истины) и соответствуют реальности, могут служить предметом точно такого же исследования, как и чисто материальные конкретности. Так химические элементы, хотя суть отвлеченности, подлежат расследованию совершенно такому же, как простые или сложные тела, которые можно накалить, взвесить и вообще подвергать прямому наблюдению. Сущность дела здесь в том, что у химических элементов, на основании опытного исследования простых и сложных тел, ими образуемых, открываются свои индивидуальные свойства и признаки, совокупность которых и составляет предмет исследования. Мы и обратимся теперь к перечислению некоторых из особенностей, принадлежащих химическим элементам, чтобы затем показать П. законность химических элементов.

Свойства химических элементов должно разделить на качественные и количественные, хотя бы первые из них и сами по себе подлежали измерению. К числу качественных прежде всего принадлежит свойство образовать кислоты и основания. Хлор может служить образцом первых, так как и с водородом, и кислородом образует явные кислоты, способные с металлами и основаниями давать соли, начиная с первообраза солей - поваренной соли. Натрий же поваренной соли NaCl может служить образцом элементов, дающих только основания, так как кислотных окислов с кислородом он не дает, образуя или основание (окись натрия), или перекись, обладающую характерными признаками типической перекиси водорода. Все элементы суть более или менее кислотные или основные, с явными переходами от первых ко вторым. Это качественное свойство элементов электрохимики (с Берцелиусом во главе) выразили, отличив сходных с натрием, на основании того, что первые при разложении током являются на аноде, а вторые на катоде. Тоже качественное различие элементов выражается отчасти и в различении металлов и металлоидов, так как основные элементы относятся к числу таких, которые в виде простых тел дают настоящие металлы, а кислотные элементы образуют в виде простых тел металлоиды, не имеющие вида и механических свойств настоящих металлов. Но во всех этих отношениях не только невозможно прямое измерение, позволяющее устанавливать последовательность перехода от одних свойств к другим, но и нет резких различий, так что есть элементы в том или ином отношении переходные или такие, которые можно отнести и в тот, и в другой разряд. Так алюминий, по внешнему виду явный металл, отлично проводящий гальв. ток, в своем единственном окисле Аl 2 O 3 (глинозем) играет роль то основную, то кислотную, так как соединяется и с основаниями (напр. Na 2 O, MgO и др.), и с кислотными окислами, например образуя серноглиноземную соль A1 2 (SO 4) 3 =Al 2 O 3 3O 3 ; и в том, и в другом случае он обладает слабо выраженными свойствами. Сера, образуя несомненный металлоид, во множестве химических отношений сходна с теллуром, который по внешним качествам простого тела всегда относился к металлам. Такие случаи, очень многочисленные, придают всем качественным признакам элементов некоторую степень шаткости, хотя и служат к облегчению и, так сказать, оживлению всей системы знакомства с элементами, указывая в них признаки индивидуальности, позволяющей предугадывать еще не наблюденные свойства простых и сложных тел, образующихся из элементов. Эти сложные индивидуальные особенности элементов придавали чрезвычайный интерес открытию новых элементов, не позволяя никоим образом сколько-нибудь предвидеть сумму физических и химических признаков, свойственных веществам, ими образуемым. Все, чего можно было достигать при изучении элементов, ограничивалось сближением в одну группу наиболее сходных, что уподобляло все это знакомство с систематикою растений или животных, т.е. изучение было рабским, описательным и не позволяющим делать какие-либо предсказания по отношению к элементам, еще не бывшим в руках исследователей. Ряд иных свойств, которые мы назовем количественными, выступил в надлежащем виде для химических элементов только со времени Лорана и Жерара, т.е. с 50-х годов текущего столетия, когда была подвергнута исследованию и обобщению способность взаимного реагирования со стороны состава частиц и укрепилось представление о двуобъемных частицах, т.е. о том, что в парообразном состоянии, пока нет разложения, всякие частицы (т.е. количества веществ, вступающие в химическое взаимодействие между собою) всех тел занимают такой же объем, какой занимают два объема водорода при той же температуре и том же давлении. Не входя здесь в изложение и развитие начал, укрепившихся при этом, ныне общепринятом представлении, достаточно сказать, что с развитием унитарной или частичной химии в последние 40 или 50 лет получилась твердость, прежде не существовавшая, как в определении атомных весов элементов, так и в определении состава частиц простых и сложных тел, ими образуемых, и стала очевидною причина различия свойств и реакций обыкновенного кислорода О 2 и озона O 3 , хотя оба содержат только кислород, как и разность маслородного газа (этилена) C 2 H 4 от жидкого цетена С 16 Н 32 , хотя оба содержат на 12 весовых частей углерода по 2 весовых части водорода. В эту многознаменательную эпоху химии выступило в ней для каждого хорошо обследованного элемента два более или менее точных количественных признака или свойства: вес атома и тип (форма) состава частиц соединений, им образуемых, хотя ничто не указывало еще ни на взаимную связь этих признаков, ни на соотношение их с другими, особенно качественными, свойствами элементов. Вес атома, свойственный элементу, т.е. неделимое, наименьшее относительное количество его, входящее в состав частиц всех его соединений, особенно был важен для изучения элементов и составлял их индивидуальную характеристику, пока чисто эмпирического свойства, так как для определения атомного веса элемента надобно узнать не только эквивалент или относительный весовой состав некоторых его соединений с элементами, вес атома которых известен из иных определений, или условно принят известным, но и определить (по реакциям, плотностям паров и т.п.) частичный вес и состав хоть одного, а лучше многих из соединений, им образуемых. Этот путь опыта столь сложен, длинен и требует такого совершенно очищенного и тщательно изученного материла из числа соединений элемента, что для многих, особенно для редких в природе элементов, при отсутствии особо понудительных причин, оставалось много сомнений относительно истинной величины атомного веса, хотя весовой состав (эквивалент) некоторых соединений их и был установлен; таковы, напр., были уран, ванадий, торий, бериллий, церий и др. При чисто эмпирическом значении веса атома не было и особого интереса углубляться в этот предмет для элементов, редко подвергаемых исследованию, тем не менее для большой массы обыкновеннейших элементов величины атомных весов можно было уже в начале 60-х годов считать твердо установленными, особенно после того, как Канницаро твердо установил для многих металлов, напр. Са, Ва, Zn, Fe, Сu и т.п. явное их отличие от К, Na, Ag и т.п., показав, что частицы напр. хлористых соединений первых из них содержат вдвое более хлора, чем вторых, т.е. что Са, Ва, Zn и т.д. дают CaCI 2 , BaCI 2 и т.д., т.е. двуатомны (двуэквивалентны или двувалентны), тогда как K, Na и т.п. одноатомны (одноаквивалентны), т.е. образуют KCI, NaCI и т.п. В эпоху около середины текущего столетия вес атома элементов послужил уже одним из признаков, по которым стали сличать сходственные элементы групп.

Другой из важнейших количественных признаков элементов представляет состав частиц высших соединений, им образуемых. Здесь более простоты и ясности, потому что Дальтонов закон кратных отношений (или простоты и цельности числа атомов, входящих в состав частиц) уже заставляет ждать только немногих чисел и разобраться в них было легче. Обобщение выразилось в учении об атомности элементов или их валентности. Водород есть элемент одноатомный, ибо дает по одному соединению HX с другими одноатомными же элементами, представителем которых считался хлор, образуя НСl. Кислород двуатомен, потому что дает H 2 O или соединяется вообще с двумя X, если под Х подразумевать одноатомные элементы. Так получают НСlO, Сl 2 О и т.д. В этом смысле азот считается трехатомным, так как дает NH 3 , NCl 3 ; углерод четырехатомным, потому что образует СН 4 , СО 2 и т.д. Сходные элементы одной группы, напр. галоиды, дают и сходные частицы соединений, т.е. имеют одну и ту же атомность. Через все это изучение элементов очень сильно двинулось вперед. Но было немало трудностей разного рода. Особую трудность представили соединения кислорода, как элемента двуатомного, способного замещать и удерживать X 2 , в силу чего совершенно понятно образование Cl 2 O, HClO и т.п. соединений с одноатомными элементами. Однако, тот же кислород дает не только НСlO, но и HClO 2 , НСlO 3 и НСlO 4 (хлорная кислота), точно также как не только H 2 O, но и H 2 O 2 (перекись водорода). Для объяснения пришлось признать, что кислород, в силу своей двуатомности, обладая двумя сродствами (как говорят), способен втиснуться в каждую частицу и встать между всякими двумя атомами, в нее входящими. Трудностей при этом получилось много, но остановимся на двух, по-моему, важнейших. Во-первых, оказалась как бы грань О 4 для числа кислородных атомов, входящих в частицу, а этой грани нельзя ждать на основании допущенного. При том, приближаясь к грани, получались часто соединения не менее, а более прочные, чего уже вовсе нельзя допустить при представлении о втиснутых атомах кислорода, так как чем более их взойдет, тем вероятнее было иметь непрочность связей. А между тем НСlO 4 прочнее НСlO 3 , эта последняя прочнее НСlO 2 и НСlO, тогда как НСl опять тело химически очень прочное. Грань же О 4 выступает в том, что водородным соединениям разной атомности:

НСl, H 2 S, Н 3 Р и H 4 Si

отвечают высшие кислородные кислоты:

НСlO 4 , H 2 SO 4 , Н 3 РО 4 и H 4 SiO 4 ,

в которых одинаково содержатся четыре атома кислорода. Из этого даже выходит тот неожиданный вывод, что считая Н - одно-, а О - двуатомными элементами, по кислороду способность к соединению выходит обратная, чем по водороду, т.е. по мере того как у элементов увеличивается свойство удерживать атомы водорода или возрастать в атомности, уменьшается способность удерживать кислород; хлор, так сказать, одноатомен по водороду и семиатомен по кислороду, а фосфор или аналогический с ним азот трехатомен в первом смысле, а во втором - пятиатомен, что видно и по другим соединениям, например NH 4 CI, POCl 3 , РСl 5 и т.п. Во-вторых, все, что знаем, явно указывает на глубочайшее различие в присоединении кислорода (втискивании его, судя по представлению об атомности элементов) в том случае, когда образуется перекись водорода, от того, когда происходит напр. из H 2 SO 4 (сернистая кисл.) серная кислота H 2 SO 4 , хотя H 2 O 2 отличается от Н 2 O точно также атомом кислорода, как H 2 SO 4 от H 2 SO 3 , и хотя раскислители в обоих случаях переводят высшую степень окисления в низшую. Разность в отношении к реакциям, свойственным H 2 O 2 и H 2 SO 4 , особенно выступает по той причине, что серной кислоте отвечает своя перекись (надсерная кислота, аналог которой надхромовая недавно изучена Wiede и содержит, по его данным, H 2 CrO 5), обладающая совокупностью свойств перекиси водорода. Значит, есть существенная разность в способе присоединения кислорода в «солеобразных» окислах и настоящих перекисях и, значит, простым втискиванием атомов кислорода между другими выражать все случаи присоединения кислорода недостаточно, а если выражать, то скорее всего это следует применять к перекисям, а не к образованию, так сказать, нормальных соединений кислорода, приближающихся к RH n О 4 , где n, число атомов водорода, не бывает более 4, как и число атомов кислорода в кислотах, содержащих один атом элементов R. Приняв сказанное во внимание и означая вообще через R атом элементов, вся совокупность сведений о солеобразных окислах приводится к тому выводу, что число самостоятельных форм или видов окислов очень не велико и ограничивается следующими восемью:

R 2 O 2 или RO, напр. CaO, FeO.

Эта стройность и простота форм окисления вовсе не вытекает из учения об атомности элементов в его обычной форме (при определении атомности по соединению с Н или Сl) и есть дело прямого сличения кислородных соединений самих по себе. Вообще учение о постоянной и неизменной атомности элементов заключает в себе трудности и несовершенства (не насыщенные соединения, подобные СО, пересыщенные, подобные JCl 3 , соед. с кристаллизационною водою и т.п.), но оно в двух отношениях имеет и поныне важное значение, а именно с ним достигнута простота и стройность выражения состава и строения сложных органических соединений, и в отношении к выражению аналогии сродственных элементов, так как атомность, по чему бы ее не считали (или состав частиц сходственных соединений), в таком случае оказывается одинаковою. Так напр. сходные между собою во многом ином галоиды или же металлы данной группы (щелочные, напр.) оказываются всегда обладающими одинаковою атомностью и образующими целые ряды сходных соединений, так что существование этого признака есть уже до некоторой степени указатель аналогии.

Чтобы не усложнять изложения, мы оставим перечисление других качественных и количественных свойств элементов (напр. изоморфизма, теплот соед., показ, преломления и т.п.) и прямо обратимся к изложению П. закона, для чего остановимся: 1) на сущности закона, 2) на его истории и приложении к изучению химии, 3) на его оправдании при помощи вновь открытых элементов, 4) на приложении его к определению величины атомных весов и 5) на некоторой неполноте существующих сведений.

Сущность П. законности. Так как из всех свойств химических элементов атомный их вес наиболее доступен для численной точности определения и для полной убедительности, то исходом для нахождения законности химических элементов всего естественнее положить веса атомов, тем более, что в весе (по закону сохранения масс) мы имеем дело с неуничтожаемым и важнейшим свойством всякой материи. Закон есть всегда соответствие переменных, как в алгебре функциональная их зависимость. Следовательно, имея для элементов атомный вес как одну переменную, для отыскания закона элементов следует брать иные свойства элементов, как другую переменную величину, и искать функциональной зависимости. Взяв многие свойства элементов, напр. их кислотность и основность, их способность соединяться с водородом или кислородом, их атомность или состав их соответственных соединений, теплоту, выделяемую при образовании соответственных, напр. хлористых соединений, даже их физические свойства в виде простых или сложных тел сходного состава и т.п., можно подметить периодическую последовательность в зависимости от величины атомного веса. Для того, чтобы это выяснить, приведем сперва простой список всех, хорошо ныне известных определений атомного веса элементов, руководясь недавним сводом, сделанным F.W. Clarke («Smithsonian Miscellaneous Collections», 1075: «A recalculation of the atomic weights», Вашингтон, 1897, стр. 34), так как его ныне должно считать наиболее достоверным и содержащим все лучшие и новейшие определения. При этом примем, вместе с большинством химиков, условно атомный вес кислорода равным 16. Подробное исследование «вероятных» погрешностей показывает, что примерно для половины приведенных результатов погрешность чисел менее 0,1%, но для остальных она доходит до нескольких десятых, а для иных, быть может, и до процентов. Все атомные веса приведены по порядку их величины.

Заключение

Периодическая система Дмитрия Ивановича Менделеева имела громадное значение для естествознания и всей науки в целом. Она доказала, что человек способен проникнуть в тайны молекулярной структуры материи, а впоследствии – и в строении атомов. Благодаря успехам теоретической химии была совершена целая революция в промышленности, создано огромное количество новых материалов. Была наконец найдена взаимосвязь неорганической и органической химии – и в первой и во второй были обнаружены одни и те же химические элементы.