Амфотерные оксиды. Химические свойства, способ получения. Амфотерные соединения

Амфотерные оксиды (имеющие двойственные свойства) - это в большинстве случаев оксиды металлов, которые обладают небольшой электроотрицательностью. В зависимости от внешних условий проявляют либо кислотные, либо оксидные свойства. Образуются эти оксиды которые обычно проявляют следующие степени окисления: ll, lll, lV.

Примеры амфотерных оксидов: цинка оксид (ZnO), хрома оксид lll (Cr2O3), алюминия оксид (Al2O3), олова оксид ll (SnO), олова оксид lV (SnO2), свинца оксид ll (PbO), свинца оксид lV (PbO2), титана оксид lV (TiO2), марганца оксид lV (MnO2), железа оксид lll (Fe2O3), бериллия оксид (BeO).

Реакции, характерные для амфотерных оксидов:

1. Эти оксиды могут реагировать с сильными кислотами. При этом образуются соли этих же кислот. Реакции такого типа являются проявлением свойств основного типа. Например: ZnO (оксид цинка) + H2SO4 (соляная кислота) → ZnSO4 + H2O (вода).

2. При взаимодействии с сильными щелочами амфотерные оксиды и гидроксиды проявляют При этом двойственность свойств (то есть амфотерность) проявляется в образовании двух солей.

В расплаве при реакции с щелочью образуется соль средняя обычная, например:
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) → Na2ZnO2 (обычная средняя соль) + H2O (вода).
Al2О3 (оксид алюминия) + 2NaOH (гидроксид натрия) = 2NaAlO2 + H2O (вода).
2Al(OH)3 (алюминия гидроксид) + 3SO3 (оксид серы) = Al2(SO4)3 (алюминия сульфат) + 3H2O (вода).

В растворе амфотерные оксиды при реакции с щелочью образуют комплексную соль, например: Al2O3 (алюминия оксид) + 2NaOH (гидроксид натрия)+ 3H2O (вода) + 2Na(Al(OH)4) (комплексная соль тетрагидроксоалюминат натрия).

3. Каждый металл любого амфотерного оксида имеет свое координационное число. Например: для цинка (Zn) - 4, для алюминия (Al) - 4 или 6, для хрома (Cr) - 4 (редко) или 6.

4. Амфотерный оксид не реагирует с водой и не растворяется в ней.

Какие реакции доказывают амфотерность металла?

Условно говоря, амфотерный элемент может проявлять свойства как металлов, так и неметаллов. Подобная характерная особенность присутствует у элементов А-групп: Be (бериллий), Ga (галлий), Ge (германий), Sn (олово), Pb, Sb (сурьма), Bi (висмут) и некоторые другие, а также многие элементы Б-групп - это Cr (хром), Mn (марганец), Fe (железо), Zn (цинк), Cd (кадмий) и другие.

Докажем следующими химическими реакциями амфотерность химического элемента цинка (Zn):

1. Zn(OH)2 + N2O5 (пентаоксид диазота) = Zn(NO3)2 (нитрат цинка) + H2O (вода).
ZnO (оксид цинка) + 2HNO3 = Zn(NO3)2 (нитрат цинка) + H2O (вода).

б) Zn(OH)2 (цинка гидроксид) + Na2O (натрия оксид) = Na2ZnO2 (диоксоцинкат натрия)+ H2O (вода).
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) = Na2ZnO2 (диоксоцинкат натрия) + H2O (вода).

В том случае, если элемент с двойственными свойствами в соединении имеет следующие степени окисления, его двойственные (амфотерные) свойства наиболее заметно проявляются в промежуточной стадии окисления.

Как пример можно привести хром (Cr). Этот элемент имеет следующие степени окисления: 3+, 2+, 6+. В случае +3 основные и кислотные свойства выражаются приблизительно в одинаковой степени, в то время как у Cr +2 преобладают основные свойства, а у Cr +6 - кислотные. Вот реакции, доказывающие данное утверждение:

Cr+2 → CrO (оксид хрома +2), Cr(OH)2 → CrSO4;
Cr+3 → Cr2O3 (оксид хрома +3), Cr(OH)3 (хрома гидроксид) → KCrO2 или же хрома сульфат Cr2(SO4)3;
Cr+6 → CrO3 (оксид хрома +6), H2CrO4 → K2CrO4.

В большинстве случаев амфотерные оксиды химических элементов со степенью окисления +3 существуют в мета-форме. Как пример, можно привести: метагидроксид алюминия (хим. формула AlO(OH) и метагидроксид железа (хим. формула FeO(OH)).

Как получают амфотерные оксиды?

1. Наиболее удобный метод их получения заключается в осаждении из водного раствора с использованием гидрата аммиака, то есть слабого основания. Например:
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный гидрата) = Al(OH)3 (амфотерный оксид) + 3NH4NO3 (реакция выполняется при двадцати градусах тепла).
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный раствор гидрата аммиака) = AlO(OH) (амфотерный оксид) + 3NH4NO3 + H2O (реакция осуществляется при 80 °C)

При этом в обменной реакции этого типа в случае избытка щелочей не будет осаждаться. Это происходит по причине того, что алюминий переходит в анион из-за своих двойственных свойств: Al(OH)3 (алюминия гидроксид) + OH− (избыток щелочей) = − (анион гидроксида алюминия).

Примеры реакций данного типа:
Al(NO3)3 (нитрат алюминия) + 4NaOH(избыток гидроксида натрия) = 3NaNO3 + Na(Al(OH)4).
ZnSO4 (сульфат цинка) + 4NaOH(избыток гидроксида натрия) = Na2SO4 + Na2(Zn(OH)4).

Соли, которые при этом образуются, относятся к Они включают в себя следующие анионы комплексные: (Al(OH)4)− и еще (Zn(OH)4)2−. Вот так называются эти соли: Na(Al(OH)4) - натрия тетрагидроксоалюминат, Na2(Zn(OH)4) - натрия тетрагидроксоцинкат. Продукты взаимодействия алюминиевых или цинковых оксидов с щелочью твердой называются по-другому: NaAlO2 - натрия диоксоалюминат и Na2ZnO2 - натрия диоксоцинкат.

Амфотерные соединения

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K 2 O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + H2O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO 3 и кислотный гидроксид H 2 SO 4 (серную кислоту):

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

H2SO4 + 2KOH → K2SO4 + 2H2O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью . Таким оксидам и гидроксидам и будет приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4 , например (Al 2 O 3 , Al (OH ) 3 , Fe 2 O 3 , Fe (OH ) 3)

И четыре исключения: металлы Zn , Be , Pb , Sn образуют следующие оксиды и гидроксиды: ZnO , Zn ( OH ) 2 , BeO , Be ( OH ) 2 , PbO , Pb ( OH ) 2 , SnO , Sn ( OH ) 2 , в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства .

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH) 2 , BeO, Be(OH) 2 , PbO, Pb(OH) 2 , SnO, Sn(OH) 2 , Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3 , Cr 2 O 3 , Cr(OH) 3 .

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами .

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

BeO + HNO 3 → Be(NO 3 ) 2 + H 2 O

Точно так же реагируют гидроксиды:

Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O

Pb(OH) 2 + 2HCl → PbCl 2 + 2H 2 O

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

    Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn (OH ) 2 как кислоту. У кислоты водород спереди, вынесем его: H 2 ZnO 2 . И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO 2 2- двухвалентный:

2K OH (тв.) + H 2 ZnO 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

Полученное вещество K 2 ZnO 2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H 2 ZnO 2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H 2 ZnO 2 – нехорошо. Пишем как обычно Zn (OH ) 2 , но подразумеваем (для собственного удобства), что это «кислота»:

2KOH (тв.) + Zn (OH ) 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 BeO 2 (метабериллат натрия, или бериллат)

Pb(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 PbO 2 (метаплюмбат натрия, или плюмбат)

С амфотерными гидроксидов с тремя группами OH (Al (OH ) 3 , Cr (OH ) 3 , Fe (OH ) 3) немного иначе.

Разберем на примере гидроксида алюминия: Al (OH ) 3 , запишем в виде кислоты: H 3 AlO 3 , но в таком виде не оставляем, а выносим оттуда воду:

H 3 AlO 3 – H 2 O → HAlO 2 + H 2 O .

Вот с этой «кислотой» (HAlO 2) мы и работаем:

HAlO 2 + KOH → H 2 O + KAlO 2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO 2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KAlO 2 (метаалюминат калия)

То же самое и с гидроксидом хрома:

Cr(OH) 3 → H 3 CrO 3 → HCrO 2

Cr(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KCrO 2 (метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH) 4 → H 4 SnO 4 → H 2 SnO 3

Pb(OH) 4 → H 4 PbO 4 → H 2 PbO 3

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn (OH ) 2 , Pb (OH ) 2), и +4 (Sn (OH ) 4 , Pb (OH ) 4).

И эти гидроксиды будут образовывать разные «соли»:

Степень окисления

Формула гидроксида

Sn (OH ) 2

Pb (OH ) 2

Sn (OH ) 4

Pb (OH ) 4

Формула гидроксида в виде кислоты

H 2 SnO 2

H 2 PbO 2

H 2 SnO 3

H 2 PbO 3

Соль (калиевая)

K 2 SnO 2

K 2 PbO 2

K 2 SnO 3

K 2 PbO 3

Название соли

метастаннАТ

метаблюмбАТ

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

Взаимодействия:

Запомните, реакции, приведенные ниже, протекают при сплавлении.

    Амфотерного оксида с сильноосновным оксидом:

ZnO (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 (метацинкат калия, или просто цинкат калия)

    Амфотерного оксида со щелочью:

ZnO (тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

ZnO (тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + CO 2

    Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH) 2 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного гидроксида со щелочью:

Zn (OH ) 2(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

    Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

Zn (OH ) 2(тв.) + K 2 CO 3(тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

ZnCO 3 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2

    Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

ZnCO 3(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO 3(тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + 2CO 2

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Название соли

BeO

Be(OH) 2

H 2 BeO 2

BeO 2 2-

K 2 BeO 2

Метабериллат (бериллат)

ZnO

Zn(OH) 2

H 2 ZnO 2

ZnO 2 2-

K 2 ZnO 2

Метацинкат (цинкат)

Al 2 O 3

Al(OH) 3

HAlO 2

AlO 2

KAlO 2

Метаалюминат (алюминат)

Fe 2 O 3

Fe(OH) 3

HFeO 2

FeO 2 —

KFeO 2

Метаферрат (НО НЕ ФЕРРАТ)

Sn(OH) 2

H 2 SnO 2

SnO 2 2-

K 2 SnO 2

Pb(OH) 2

H 2 PbO 2

PbO 2 2-

K 2 PbO 2

SnO 2

Sn (OH ) 4

H 2 SnO 3

SnO 3 2-

K 2 SnO 3

МетастаннАТ (станнат)

PbO 2

Pb (OH ) 4

H 2 PbO 3

PbO 3 2-

K 2 PbO 3

МетаблюмбАТ (плюмбат)

Cr 2 O 3

Cr(OH) 3

HCrO 2

CrO 2 —

KCrO 2

Метахромат (НО НЕ ХРОМАТ)

    Взаимодействие амфотерных соединений с растворами ЩЕЛОЧЕЙ (здесь только щелочи).

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами , и когда он окружен шестью гидроксид-ионами .

Запишем сокращенное ионное уравнение этих процессов:

Al(OH) 3 + OH — → Al(OH) 4 —

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

Al(OH) 3 + 3OH — → Al(OH) 6 3-

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно . Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al (OH ) 4 — или Al (OH ) 6 3- .

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки .

Al (OH ) 3 + KOH → K (тетрагидроксоалюминат калия)

Al (OH ) 3 + 3KOH → K 3 (гексагидроксоалюминат калия)

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K 3 (допустимо образование K ». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al 2 O 3 + NaOH → Na

Al 2 O 3 + NaOH → Na 3

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Амфотерное вещество

Название соли

Al 2 O 3

Al(OH) 3

Тетрагидроксоалюминат натрия

Al(OH) 3 + NaOH → Na

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Na 3

Гексагидроксоалюминат натрия

Al(OH) 3 + 3NaOH → Na 3

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

Zn(OH) 2

K 2

Тетрагидроксоцинкат натрия

Zn(OH) 2 + 2NaOH → Na 2

ZnO + 2NaOH + H 2 O → Na 2

Zn + 2NaOH + 2H 2 O → Na 2 + H 2

K 4

Гексагидроксоцинкат натрия

Zn(OH) 2 + 4NaOH → Na 4

ZnO + 4NaOH + H 2 O → Na 4

Zn + 4NaOH + 2H 2 O → Na 4 + H 2

Be(OH) 2

Li 2

Тетрагидроксобериллат лития

Be(OH) 2 + 2LiOH → Li 2

BeO + 2LiOH + H 2 O → Li 2

Be + 2LiOH + 2H 2 O → Li 2 + H 2

Li 4

Гексагидроксобериллат лития

Be(OH) 2 + 4LiOH → Li 4

BeO + 4LiOH + H 2 O → Li 4

Be + 4LiOH + 2H 2 O → Li 4 + H 2

Cr 2 O 3

Cr(OH) 3

Тетрагидроксохромат натрия

Cr(OH) 3 + NaOH → Na

Cr 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксохромат натрия

Cr(OH) 3 + 3NaOH → Na 3

Cr 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Fe 2 O 3

Fe(OH) 3

Тетрагидроксоферрат натрия

Fe(OH) 3 + NaOH → Na

Fe 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксоферрат натрия

Fe(OH) 3 + 3NaOH → Na 3

Fe 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na 3 + 6H 2 SO 4 → 3Na 2 SO 4 + Al 2 (SO 4 ) 3 + 12H 2 O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.

Цинк - элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях - хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

В четвертом периоде цинк является последним d-элементом, его валентные электроны 3d 10 4s 2 . В образовании химических связей участвуют только электроны внешнего энергетического уровня, поскольку конфигурация d 10 является очень устойчивой. В соединениях для цинка характерна степень окисления +2.

Цинк – химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства.

Взаимодействие цинка с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка:
2Zn + O 2 → 2ZnO.

При поджигании энергично реагирует с серой:
Zn + S → ZnS.

С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора:
Zn + Cl 2 → ZnCl 2 .

При действии паров фосфора на цинк образуются фосфиды:
Zn + 2P → ZnP 2 или 3Zn + 2P → Zn 3 P 2 .

С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.

Взаимодействие цинка с водой
Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
Zn + H 2 O → ZnO + H 2 .

Взаимодействие цинка с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот:
Zn + 2HCl → ZnCl 2 + H 2 ;
Zn + H 2 SO 4 → ZnSO 4 + H 2 .

Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония:
4Zn + 10HNO 3 → 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O.

Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот:
Zn + 2H 2 SO 4 → ZnSO 4 + SO 2 + 2H 2 O;
Zn + 4HNO 3 → Zn(NO 3) 2 + 2NO 2 + 2H 2 O

Взаимодействие цинка со щелочами
Реагирует с растворами щелочей с образованием гидроксокомплексов:
Zn + 2NaOH + 2H 2 O → Na 2 + H 2

при сплавлении образует цинкаты:
Zn + 2KOH → K 2 ZnO 2 + H 2 .

Взаимодействие с аммиаком
С газообразным аммиаком при 550–600°С образует нитрид цинка:
3Zn + 2NH 3 → Zn 3 N 2 + 3H 2 ;
растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка:
Zn + 4NH 3 + 2H 2 O → (OH) 2 + H 2 .

Взаимодействие цинка с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов:
Zn + CuSO 4 → Cu + ZnSO 4 ;
Zn + CuO → Cu + ZnO.

Оксид цинка (II) ZnO – белые кристаллы, при нагревании приобретают желтую окраску. Плотность 5,7 г/см 3 , температура возгонки 1800°С. При температуре выше 1000°С восстанавливается до металлического цинка углеродом, угарным газом и водородом:
ZnO + C → Zn + CO;
ZnO + CO → Zn + CO 2 ;
ZnO + H 2 → Zn + H 2 O.

С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей:
ZnO + 2HCl → ZnCl 2 + H 2 O;
ZnO + 2NaOH + H 2 O → Na 2 .

При сплавлении с оксидами металлов образует цинкаты:
ZnO + CoO → CoZnO 2 .

При взаимодействии с оксидами неметаллов образует соли, где является катионом:
2ZnO + SiO 2 → Zn 2 SiO 4 ,
ZnO + B 2 O 3 → Zn(BO 2) 2 .

Гидроксид цинка (II) Zn(OH) 2 – бесцветное кристаллическое или аморфное вещество. Плотность 3,05 г/см 3 , при температуре выше 125°С разлагается:
Zn(OH) 2 → ZnO + H 2 O.

Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах:
Zn(OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O;
Zn(OH) 2 + 2NaOH → Na 2 ;

также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка:
Zn(OH) 2 + 4NH 3 → (OH) 2 .

Получается в виде осадка белого цвета при взаимодействии солей цинка со щелочами:
ZnCl 2 + 2NaOH → Zn(OH) 2 + 2NaCl.