Сколько реакций в цикле кребса. Цикл трикарбоновых кислот (ЦТК). Пополнение пула метаболитов ЦТК из аминокислот

Я рассказывал о том, что это вообще такое, для чего цикл Кребса нужен и какое место в метаболизме он занимает. Теперь давайте приступим к самим реакциям этого цикла.

Сразу оговорюсь — лично для меня заучивание реакций было совершенно бессмысленным занятием до того, пока я не разобрал вышеуказанные вопросы. Но если вы уже разобрались с теорией, предлагаю перейти к практике.

Вы можете увидеть множество способов написания цикла Кребса. Чаще всего встречаются варианты вроде этого:

Но мне удобнее всего показался способ написания реакций из старого доброго учебника по биохимии от авторов Берёзова Т.Т. и Коровкина Б.В.

Первая реакция

Уже знакомые нам Ацетил-КоА и Оксалоацетат соединяются и превращаются в цитрат, то есть в лимонную кислоту .

Вторая реакция

Теперь берём лимонную кислоту и превращаем её изолимонную кислоту . Другое название этого вещества — изоцитрат.

На самом деле, эта реакция идёт несколько сложнее, через промежуточную стадию — образование цис-аконитовой кислоты. Но я решил упростить, чтобы вы получше запомнили. При необходимости вы сможете добавить сюда недостающую ступень, если будете помнить всё остальное.

По сути, две функциональные группы просто поменялись местами.

Третья реакция

Итак, у нас получилась изолимонная кислота. Теперь её нужно декарбоксилировать (то есть отщипнуть COOH) и дегидрировать (то есть отщипнуть H) . Получившееся вещество — это a-кетоглутарат .

Эта реакция примечательна тем, что здесь образуется комплекс HAДH 2 . Это значит, что переносчик НАД подхватывает водород, чтобы запустить дыхательную цепь.

Мне нравится вариант реакций Цикла Кребса в учебнике Берёзова и Коровкина именно тем, что сразу отлично видно атомы и функциональные группы, которые участвуют в реакциях.

Четвёртая реакция

Снова как часы работает никотинАмидАденинДинуклеотид, то есть НАД . Это славный переносчик появляется здесь, как и в прошлом шаге, чтобы захватить водород и унести его в дыхательную цепь.

Кстати, получившееся вещество — сукцинил-КоА , не должно вас пугать. Сукцинат — это другое название янтарной кислоты, хорошо знакомой вам со времён биоорганической химии. Сукцинил-Коа — это соединение янтарной кислоты с коэнзимом-А. Можно сказать, что это эфир янтарной кислоты.

Пятая реакция

В прошлом шаге мы говорили, что сукцинил-КоА — это эфир янтарной кислоты. А теперь мы получим саму янтарную кислоту , то есть сукцинат, из сукцинила-КоА. Крайне важный момент: именно в этой реакции происходит субстратное фосфорилирование .

Фосфорилирование вообще (оно бывает окислительное и субстратное) — это добавление фосфорной группы PO 3 к ГДФ или АТФ, чтобы получить полноценный ГТФ , или соответственно, АТФ. Субстратное отличается тем, что эта самая фосфорная группа отрывается от какого-либо вещества, её содержащую. Ну проще говоря, она переносится с СУБСТРАТА на ГДФ или АДФ. Поэтому и называется — «субстратное фосфорилирование».

Ещё раз: на момент начала субстратного фосфорилирования у нас имеется дифосфатная молекула — гуанозинДифосфат или аденозинДифосфат. Фосфорилирование заключается в том, что молекула с двумя остатками фосфорной кислоты — ГДФ или АДФ «достраивается» до молекулы с тремя остатками фосфорной кислоты, чтобы получились гуанозинТРИфосфат или аденозинТРИфосфат. Этот процесс происходит во время превращения сукцинила-КоА в сукцинат (то есть, в янтарную кислоту).

На схеме вы можете увидеть буквы Ф (н). Это значит «неорганический фосфат». Неорганический фосфат переходит от субстрата на ГДФ, чтобы в продуктах реакции был хороший, полноценный ГТФ. Теперь давайте посмотрим на саму реакцию:

Шестая реакция

Следующее превращение. На сей раз янтарная кислота, которую мы получили в прошлом этапе, превратится в фумарат , обратите внимание на новую двойную связь.

На схеме отлично видно, как в реакции участвует ФАД : этот неутомимый переносчик протонов и электронов подхватывает водород и утаскивает его непосредственно в дыхательную цепь.

Седьмая реакция

Мы уже на финишной прямой. Предпоследняя стадия Цикла Кребса — это реакция превращения фумарата в L-малат. L-малат — это другое название L-яблочной кислоты , знакомой ещё с курса биоорганической химии.

Если вы посмотрите на саму реакцию, вы увидите, что, во-первых, она проходит в обе стороны, а во-вторых, её суть — гидратирование. То есть фумарат просто присоединяет к себе молекулу воды, в итоге получается L-яблочная кислота.

Восьмая реакция

Последняя реакция Цикла Кребса — это окисление L-яблочной кислоты до оксалоацетата, то есть до щавелевоуксусной кислоты . Как вы поняли, «оксалоацетат» и «щавелевоуксусная кислота» — это синонимы. Вы, наверное, помните, что щавелевоуксусная кислота является компонентом первой реакции цикла Кребса.

Здесь же отмечаем особенность реакции: образование НАДH 2 , который понесёт электроны в дыхательную цепь. Не забудьте также реакции 3,4 и 6, там также образуются переносчики электронов и протонов для дыхательной цепи.

Как видите, я специально выделил красным цветом реакции, в ходе которых образуются НАДH и ФАДH2. Это очень важные вещества для дыхательной цепи. Зелёным я выделил реакцию, в рамках которой происходит субстратное фосфорилирование, и получается ГТФ.

Как это всё запомнить?

На самом деле, не так уж и сложно. Полностью прочитав две моих статьи, а также ваш учебник и лекции, вам нужно просто потренироваться писать эти реакции. Я рекомендую запомнить цикл Кребса блоками по 4 реакции. Напишите эти 4 реакции несколько раз, для каждой подбирая ассоциацию, подходящую именно вашей памяти.

Например, мне сразу очень легко запомнилась вторая реакция, в которой из лимонной кислоты (она, думаю, всем знакома с детства) образуется изолимонная кислота.

Вы можете так же использовать мнемонические запоминалки, такие как: «Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует ряду - цитрат, цис -аконитат, изоцитрат, альфа-кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат». Есть ещё куча подобных.

Но, если честно, мне не нравились такие стихи практически никогда. По-моему, проще запомнить саму последовательность реакций. Мне отлично помогло разделение цикла Кребса на две части, каждую из которых я тренировался писать по несколько раз в час. Как правило, это происходило на парах вроде психологии или биоэтики. Это весьма удобно — не отвлекаясь от лекции, вы можете потратить буквально минутку, написав реакции так, как вы их запомнили, а затем сверить с правильным вариантом.

Кстати, в некоторых вузах на зачётах и экзаменах по биохимии преподаватели не требуют знания самих реакций. Нужно знать только что такое цикл Кребса, где он происходит, в чём его особенности и значение, и, разумеется, саму цепочку превращений. Только цепочку можно называть без формул, используя лишь названия веществ. Такой подход не лишён смысла, на мой взгляд.

Надеюсь, моё руководство по циклу трикарбоновых кислот вам помогло. А я хочу напомнить, что эти две статьи не являются полноценной заменой вашим лекциям и учебникам. Я написал их лишь для того, чтобы вы примерно понимали, что такое цикл Кребса. Если вы вдруг увидели какую-то ошибку в моём руководстве, пожалуйста, отпишитесь о ней в комментариях. Спасибо за внимание!

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

Этот метаболический путь назван именем открывшего его автора - Г. Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии , образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса - центральный путь обмена веществ.

Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.

1-я реакция - образование лимонной кислоты . Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):

Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.

2-я реакция - образование изолимонной кислоты. Эта реакция катализируется железосодержащим (Fe - негеминовое) ферментом - аконитазой. Реакция протекает через стадию образования цис -аконитовой кислоты (лимонная кислота подвергается дегидратации с образованием цис -аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).

3-я реакция - дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД + -зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе - АДФ.

4-я реакция - окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой - ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД - собственные коферменты комплекса; КоА-SH и НАД + - внешние коферменты.

5-я реакция - субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты - при этом образуется ГТФ, молекула которого вступает в реакцию перефосфорилирования с АДФ - образуется АТФ.

6-я реакция - дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа - II комплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.

7-я реакция - образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту - при этом образуется яблочная кислота, причем ее L -форма, так как фермент обладает стереоспецифичностью.


8-я реакция - образование оксалацетата. Реакция катализируется малатдегидрогеназой , коферментом которой служит НАД + . Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.

Последние три реакции обратимы, но поскольку НАДН?Н + захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата . Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.

Функции цикла трикарбоновых кислот многообразны:

· Интегративная - цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

· Анаболическая - субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА - для синтеза гема, α-кетоглутарат - для синтеза глютаминовой кислоты, ацетил-КоА - для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.

· Катаболическая - в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот - все они превращаются в ацетил-КоА; глутаминовая кислота - в α-кетоглутаровую; аспарагиновая - в оксалоацетат и пр.

· Собственно энергетическая - одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

· Водороддонорная - при участии трех НАД + -зависимых дегидрогеназ (дегидрогеназ изоцитрата, α-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН?Н + и 1 ФАДН 2 . Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.

· Анаплеротическая - восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.

Скорость реакция цикла Кребса определяется энергетическими потребностями клетки

Скорость реакций цикла Кребса коррелирует с интенсивностью процесса тканевого дыхания и связанного с ним окислительного фосфорилирования - дыхательный контроль. Все метаболиты, отражающие достаточное обеспечение клетки энергией являются ингибиторами цикла Кребса. Увеличение соотношения АТФ/АДФ - показатель достаточного энергообеспечении клетки и снижает активность цикла. Увеличение соотношения НАД + / НАДН, ФАД/ ФАДН 2 указывает на энергодефицит и является сигналом ускорения процессов окисления в цикле Кребса.

Основное действие регуляторов направлено на активность трех ключевых ферментов: цитратсинтазы, изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназы. Аллостерическими ингибиторами цитратсинтазы являются АТФ, жирные кислоты. В некоторых клетках роль ее ингибиторов играют цитрат и НАДН. Изоцитратдегидрогеназа аллостерически активируется АДФ и ингибируется при повышении уровня НАДН+Н + .

Рис. 5.15. Цикл трикарбоновых кислот (цикл Кребса)

Последний является ингибитором и a-кетоглутаратдегидрогена зы, активность которой снижается также при повышении уровня сукцинил-КоА.

Активность цикла Кребса во многом зависит от обеспеченности субстратами. Постоянная “утечка” субстратов из цикла (например, при аммиачном отравлении) может вызывать значительные нарушения энергообеспеченности клеток.

Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты . Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex - вершина).

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН?Н + и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

· Окислительная часть . Первая реакция -дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназойс образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН?Н + (НАДФ + - кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция - гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции - 6-фосфоглюконат.

Третья реакция - дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ + . В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.

· Неокислительная часть . В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы (рис5.16)

Рис.5.16.Окислительная часть пентозофосфатного пути (F-вариант)

Рибулозо-5-фосфат может изомеризоваться (фермент - кетоизомераза ) в рибозу-5-фосфат и эпимеризоваться (фермент - эпимераза ) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент - тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза переносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это - транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути(рис.5.17).Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.5.17. Пентозофосфатный (апотомический) путь обмена глюкозы (октулозный, или L-вариант)

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

Глюкозо-6-Ф + 7Н 2 О + 12НАДФ + 5 Пентозо-5-Ф + 6СО 2 + 12 НАДФН?Н + + Фн.

Образующийся в ПВК-дегидрогеназной реакции ацетил-SКоА далее вступает в цикл трикарбоновых кислот (ЦТК, цикл лимонной кислоты, цикл Кребса). Кроме пирувата, в цикл вовлекаются кетокислоты, поступающие из катаболизма аминокислот или каких-либо иных веществ.

Цикл трикарбоновых кислот

Цикл протекает в матриксе митохондрий и представляет собой окисление молекулы ацетил-SКоА в восьми последовательных реакциях.

В первой реакции связываются ацетил и оксалоацетат (щавелевоуксусная кислота) с образованием цитрата (лимонной кислоты), далее происходит изомеризация лимонной кислоты до изоцитрата и две реакции дегидрирования с сопутствующим выделением СО 2 и восстановлением НАД.

В пятой реакции образуется ГТФ, это реакция субстратного фосфорилирования . Далее последовательно происходит ФАД-зависимое дегидрирование сукцината (янтарной кислоты), гидратация фумаровой кислоты до малата (яблочная кислота), далее НАД-зависимое дегидрирование с образованием оксалоацетата .

В итоге после восьми реакций цикла вновь образуется оксалоацетат.

Последние три реакции составляют так называемый биохимический мотив (ФАД-зависимое дегидрирование, гидратация и НАД-зависимое дегидрирование, он используется для введения кетогруппы в структуру сукцината. Этот мотив также присутствует в реакциях β-окисления жирных кислот . В обратной последовательности (восстановление, де гидратация и восстановление) этот мотив наблюдается в реакциях синтеза жирных кислот .

Функции ЦТК

1. Энергетическая

  • генерация атомов водорода для работы дыхательной цепи , а именно трех молекул НАДН и одной молекулы ФАДН2 ,
  • синтез одной молекулы ГТФ (эквивалентна АТФ).

2. Анаболическая . В ЦТК образуются

Анаболические реакции ЦТК

Регуляция цикла трикарбоновых кислот

Аллостерическая регуляция

Ферменты, катализирующие 1-ю, 3-ю и 4-ю реакции ЦТК, являются чувствительными к аллостерической регуляции метаболитами:

Регуляция доступностью оксалоацетата

Главным и основным регулятором ЦТК является оксалоацетат , а точнее его доступность. Наличие оксалоацетата вовлекает в ЦТК ацетил-SКоА и запускает процесс.

Обычно в клетке имеется баланс между образованием ацетил-SКоА (из глюкозы, жирных кислот или аминокислот) и количеством оксалоацетата. Источником оксалоацетата являются

1) Пировиноградная кислота , образуемая из глюкозы или аланина,

Синтез оксалоацетата из пирувата

Регуляция активности фермента пируваткарбоксилазы осуществляется при участии ацетил-SКоА . Он является аллостерическим активатором фермента, и без него пируваткарбоксилаза практически неактивна. Когда ацетил-SКоА накапливается, то фермент начинает работать и образуется оксалоацетат, но, естественно, только при наличии пирувата.

2) Получение из аспарагиновой кислоты в результате трансаминирования или из цикла АМФ-ИМФ,

3) Поступление из фруктовых кислот самого цикла (янтарной, α-кетоглутаровой, яблочной, лимонной), образуемых при катаболизме аминокислот или в других процессах. Большинство аминокислот при своем катаболизме способны превращаться в метаболиты ЦТК, которые далее идут в оксалоацетат, чем также поддерживается активность цикла.

Пополнение пула метаболитов ЦТК из аминокислот

Реакции пополнения цикла новыми метаболитами (оксалоацетат, цитрат, α-кетоглутарат и т.п) называются анаплеротическими .

Роль оксалоацетата в метаболизме

Примером существенной роли оксалоацетата служит активация синтеза кетоновых тел и кетоацидоз плазмы крови при недостаточном количестве оксалоацетата в печени . Такое состояние наблюдается при декомпенсации инсулинзависимого сахарного диабета (СД 1 типа) и при голодании. При указанных нарушениях в печени активирован процесс глюконеогенеза , т.е. образования глюкозы из оксалоацетата и других метаболитов, что влечет за собой снижение количества оксалоацетата. Одновременная активация окисления жирных кислот и накопление ацетил-SКоА запускает резервный путь утилизации ацетильной группы – синтез кетоновых тел . В организме при этом развивается закисление крови (кетоацидоз ) с характерной клинической картиной: слабость, головная боль, сонливость, снижение мышечного тонуса, температуры тела и артериального давления.

Изменение скорости реакций ЦТК и причины накопления кетоновых тел при некоторых состояниях

Описанный способ регуляции при участии оксалоацетата является иллюстрацией к красивой формулировке "Жиры сгорают в пламени углеводов ". В ней подразумевается, что "пламень сгорания" глюкозы приводит к появлению пирувата, а пируват превращается не только в ацетил-SКоА, но и в оксалоацетат. Наличие оксалоацетата гарантирует включение ацетильной группы, образуемой из жирных кислот в виде ацетил-SКоА, в первую реакцию ЦТК.

В случае масштабного "сгорания" жирных кислот, которое наблюдается в мышцах при физической работе и в печени при голодании , скорость поступления ацетил-SКоА в реакции ЦТК будет напрямую зависеть от количества оксалоацетата (или окисленной глюкозы).

Если количество оксалоацетата в гепатоците недостаточно (нет глюкозы или она не окисляется до пирувата), то ацетильная группа будет уходить на синтез кетоновых тел . Такое происходит при длительном голодании и сахарном диабете 1 типа .